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EXECUTIVE SUMMARY 

Quadratic time-frequency representations (QTFRs) are used in this report to analyze the 
time-frequency structure of cetacean mammal sounds. The nature of the signals and their 
properties were determined, and the types of QTFRs that are best suited for analyzing these 
biological signals based on their properties were investigated. Analysis of the group delay 
structure of the mammalian vocal signals was matched to the appropriate quadratic time- 
frequency class for proper signal processing with minimal skewing of the results. 

This report includes a discussion of the mammalian data recordings from the Woods Hole 
Oceanographic Institution (WHOI) and an introduction to quadratic time-frequency classes, 
properties, and mathematical structure. It also determines the appropriate computational 
formulations for analyzing underwater mammalian vocal communications using quadratic time- 
frequency representations. 

There are two main marine mammal sounds: short broadband clicks, which are the sounds 
used by dolphins and whales for echolocation, and whistles, which are continuous, frequency- 
modulated, narrowband signals used by dolphins and whales primarily for communication. It 
has been determined that the broadband clicks can be analyzed using constant time-shift 
covariant QTFRs, such as the Wigner distribution and the spectrogram, as these QTFRs are 
matched to signals with constant or linear group delay characteristics. On the other hand, it has 
been determined that whistles have characteristic time-frequency structures that may be matched 
to the generalized time shift preserved by the generalized warped QTFRs. These QTFRs can be 
obtained by appropriately warping the constant time-shift covariant QTFRs of Cohen's class or 
the affine class. For example, it was observed that long-finned pilot whales emit whistles with a 
characteristic hyperbolic time-frequency structure. Thus, they were well analyzed using 
hyperbolic QTFRs, since these QTFRs preserve hyperbolic group delay changes on the analysis 
signals. The hyperbolic QTFRs are obtained by hyperbolically warping corresponding QTFRs 
of Cohen's class. Due to the large sampling rate of the data provided by WHOI, the whistles 
extend over a large number of samples, resulting in a high computational intensity in the existing 
algorithms. Therefore, short-time time-frequency techniques and short-time adaptive time- 
frequency techniques were used to provide an adequate analysis of the whistles. 

A large selection of sound files from the WHOI database was analyzed and the time- 
frequency structure characterized. The time duration and bandwidth of the clicks and whistles of 
various genera of dolphins and whales are provided in this report. 
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FOREWORD 

The research presented in this report outlines the time frequency characterization of 
mammalian click and whistle sounds. Analysis of the group delay structure of the cetacean 
mammalian vocal signals was matched to the appropriate quadratic time-frequency class for 
proper signal processing with minimal skewing of the results. 

The time duration and bandwidth of the clicks and whistles of various genera of dolphins 
and whales are provided in this report. These data are useful as a comparison guide to other 
recorded sonar data to aid in the identification of recorded signals of unknown origin that may 
belong to ocean dwelling mammals via the time duration and bandwidth structure of the recorded 
signals. This information is also useful for areas where mammal sounds interfere with human- 
generated sonar transmissions and when noise characterization is required for signal processing. 
The characterized mammalian noise can be useful for signal processing algorithms that may 
benefit undersea acoustic communications. This report also outlines the correct mathematical 
formulations for analysis of underwater mammalian sounds with quadratic time-frequency 
representations. 

vii (viii blank) 



USE OF QUADRATIC TIME-FREQUENCY REPRESENTATIONS 
TO ANALYZE CETACEAN MAMMAL SOUNDS 

1. INTRODUCTION 

The analysis of marine mammal sounds has been a subject of considerable interest for 

many years, as marine mammals such as dolphins and whales have complicated acoustics and 

communications systems. Marine mammal sound emissions can be classified into two broad 

categories: sonar signals called clicks, used for echolocation1"7 and non-echolocation signals 

called whistles, used for communication.8"14 Sonar clicks are short-duration, broadband, 

transient-like pulses that are used by marine mammals to detect, localize, discriminate, and 

recognize various objects of interest such as prey, obstacles, and predators.1 Marine mammals 

emit bursts of clicks, called click trains, when searching for targets. The number of clicks and 

the time interval between clicks depend on various factors, such as the distance of interest, the 

difficulty in detecting a target, the presence or absence of a target of interest, and the mammal's 

expectation of finding a specific target. Whistles are long-duration, narrowband, frequency- 

modulated, continuous tonal sounds, often referred to as squeaks, squawks, and squeals,1 that are 

not used for active sonar searches. They vary in frequency, duration, and in the shape of the 

whistle time-frequency structure, depending on the nature of the signal's frequency modulation. 

The whistles are used mainly for communication between the animals. 

Marine mammal sounds are nonstationary signals, i.e., signals whose frequency content 

changes with time; thus, they have time-frequency characteristics that can be seen by a sonogram 
i r   n 

or spectrogram.  "    The Fourier transform is of limited use for the analysis of mammal sounds, 

since it does not provide easily accessible information about the time localization of a given 

frequency component in a signal. Analysis tools of choice are the quadratic time-frequency 

representations (QTFRs), as they are potentially capable of displaying the temporal localization 

of the signal's spectral components.18"21 Some well-known QTFRs include the Wigner 



distribution,18'22 the spectrogram,23'24 the Choi-Williams distribution,20'25 the scalogram,19'26 and 

the Altes-Q distribution.27"29 Although many QTFRs have been proposed in the literature, no one 

QTFR exists that can be used effectively in all possible applications. The choice of a QTFR 

depends on a specific application as well as the QTFR properties that are desirable for that 

application. Thus, QTFRs may be classified based on various properties that they satisfy. 

Some important QTFR properties include the covariance properties. A QTFR is said to 

satisfy a covariance property provided that the QTFR preserves (i.e., is covariant to) various 

time-frequency changes in the signal. For example, if a signal is shifted in time, then a QTFR 

satisfies the constant (nondispersive) time-shift covariance property if the QTFR preserves the 

exact time shift information of the signal.18 A useful QTFR classification is based on the 

grouping of various covariance properties that the QTFRs satisfy. In particular, Cohen's 

class20'30 consists of QTFRs (with signal-independent kernels) that satisfy the constant time-shift 
  1Q   0f\   ^ 1    ^9 

and the constant frequency-shift covariance properties. The affine class QTFRs  '   '   ' 

preserve constant time shifts and dilations (scale changes) on the analysis signal. The hyperbolic 

class QTFRs  '   "   are covariant to hyperbolic time shifts and dilations on the signal. Other 

covariant QTFR classes include the power classes,36"40 the exponential class,41'42 and the power 

exponential classes.43'44 These QTFR classes satisfy different covariance properties and, as a 

result, are used for different types of applications. 

The aim of this project was to analyze the time-frequency structure of marine mammal sounds 

in order to ascertain the type and properties of the signal. Various types of QTFRs were 

investigated to determine those QTFRs that are best suited for analyzing biological signals based 

on the signal's properties. Some QTFRs types, for example Cohen's class of time-frequency 

shift covariant QTFRs, have been used to analyze dolphin whistles;17'45 however, this report 

provides analysis of other types of QTFRs that match the characteristic time-frequency structure 

of marine mammal sounds to a particular group delay curve in the time-frequency plane. The 

MATLAB code for some of the QTFRs already exists, such as the code for some of Cohen's 

class, affine class, and hyperbolic class QTFRs, and new MATLAB code was written for those 

QTFRs that are considered well matched for analysis of marine mammal sounds. The results are 

summarized in the following sections. 



This report is organized as follows: Section 2 describes the marine mammal sound data 

files provided by the Woods Hole Oceanographic Institution (WHOI)46 and provides the 

MATLAB code necessary to access the data for processing. Section 3 discusses some well- 

known QTFR classes (Cohen's class and the affine class) that preserve constant time shifts on 

the analysis signal. The constant time-shift covariant QTFRs, including the Wigner distribution 

and the spectrogram, are ideal for analyzing signals with constant or linear time-frequency 

characteristics, such as dolphin and whale clicks. Section 4 presents the generalized time-shift 

covariant QTFR classes that preserve the signal's changes in group delay. These QTFRs include 

hyperbolic QTFRs, such as the Altes Q-distribution, and power QTFRs, such as the power 

Wigner distribution that are better matched to the frequency-modulated narrowband whistles of 

dolphins and whales. Section 5 describes the implementation technique of the generalized time- 

shift covariant QTFRs, such as power class QTFRs, using the warping approach. Section 6 

provides an analysis of sonar clicks and click trains. Clicks can be successfully analyzed using 

Cohen's class QTFRs, such as the Wigner distribution and its smoothed versions, due to the 

click's broadband nature. Section 7 analyzes various dolphin and whale whistles, and provides 

tables to summarize the results. 

Whistles may be matched to hyperbolic class QTFRs and power class QTFRs depending 

on their characteristic time-frequency structure. As the sampling rate of the sounds provided is 

relatively large, the long-duration whistles consist of many samples; as a result, the present 

algorithms developed to compute hyperbolic and power QTFRs are not computationally 

efficient. Thus, short time-frequency techniques were developed to analyze longer sections of 

the data in an on-line fashion for both hyperbolic and power QTFRs. 

3 (4 blank) 



2. MARINE MAMMAL SOUNDS 

2.1 SOUND DATABASE 

The marine mammal sounds analyzed in this report were provided by WHOFs SOUND 

database. This database contains descriptive information about each of the sound recordings and 

is accompanied by a set of digital sound-cut files whose filenames match the text database 

record. These cuts are sequences of sound from the repertoire of vocalizations of the different 

species of marine mammals that are selected from the original underwater recordings and are 

digitized. The digitized sound cuts are stored as independent files in the tapes provided, and are 

accompanied by an ASCII file that contains the corresponding database records. The 

organization of the database records in various fields, together with the SOUND database field 

description, is provided in the Woods Hole Oceanographic Institution Technical Report1 WHOI- 

92-31,* entitled "SOUND Database of Marine Animal Vocalizations Structure and Operations," 

by W. A. Watkins, K. Fristrup, M. A. Daher, and T. Howald.46 Thus, for each digitized file, 

there is information regarding, for example, the sample rate, the cut (record) size, the 

identification of the vocalizing mammal, and the species code of the mammal. Similar indexing 

information is also included in the first 512 bytes of each file. An example of a record file from 

the SOUND database is provided in table 1. The record chosen is 7200700l.kay, which consists 

of clicks and whistles from striped dolphins (Stenella coeruleoalba). Also present in the record is 

ambient noise from the ship or from ice (transient X), and the other species present during the 

recording (sperm whales (Physeter catodon)). An explanation of the various fields in the record 

is given in table 2. Additional information46 on the structure of the database, with a listing of 

species, common mammal names, and geographical locations of the recordings are also provided 

in the report. 

Two additional Woods Hole Oceanographic Institution Technical Reports, WHOI-92-0447 and WHOI-94-13,48 were 
also available for reference. 



Table 1. Example of a SOUND Database Record 

Record 72007001.kay 

RN 72007001 

CU 1063 B7:00.000 18:00.692 

NC41B 

SR 166666 

CS 1.918 

PL Pemtek 301/ K-H L0.02 H50.0 

SCOTF 

GS Stenella coeruleonalba BD15C 

; Transient X 

GA ANWBD15C ANWX 

OD4-Aug-1972BD15CX 

;AugBD15C1972BD15C 

; AugX 1972X 

NT BD15C X N37 42' W73 01'. Clicks and whistles. Water splashes. 

OS Physeter catodon BA2A 

NA50 + BD15C 

GB Delaware BD15CX 

GC N37BD15C W073BD15C 

; N37X W073X 

AUWAW 



Table 2. Explanation of the Various Fields in the SOUND Database Record in Table 1 

Field Label Example 

RN 72007001 Retrieval Number of Record (Year/Tape#/Cut#) 
Year: 1972/ Tape #: 007/ Cut #: 001 

CU 1063 B7:00.000 18:00.692 Cue or time (min:sec) on tape at signal end, 
(B) analyzer buffer size (min:sec), and 
decimal time (sec) from the start of the Kay buffer 
to the cursor at the beginning of the sound. 

NC41B # of channels recorded (first digit). 
# of channels multiplexed (second digit), Channel ID letters. 

SR 166666 Sample rate (Hz). 

CS 1.918 Cut size (sec). 

PL Pemtek 301/K-H L0.02 H50.0 Playback recorder/filter type settings in kHz, L=low 
(forHP),H=high(forLP). 

SCOTF Signal class (S=Signature, M=Mimic, V=Variant, 
D=Deletion, U=Uncharacteristic, C=Calf), quality (1 to 5-best). 
0=Overlap in T (time) or F (frequency) 

GS Stenella coeruleoalba BD15C 
; Transient X 

Genus and species of vocalizing animal, scientific names, 
species code. 

GA ANWBD15C ANWX Geographic location area code (first 3 letters), species code. 

OD4-Aug-1972BD15CX 
;AugBD15C1972BD15C 
;AugX1972X 

Observation date for original, species code, e.g., for BD15C, 
month=August, year=1972. 

NT BD15C X N37 42' W73 01'. 
Clicks and whistles. Water splashes 

Species code, Comments, Recording detail. 

OS Physeter catodon BA2A Other species present, species codes. 

NA50 + BD15C Number of animals vocalizing, species codes. 

GB Delaware BD15CX Geographical location area name, species code. 

GC N37BD15C W073BD15C 
; N37X W073X 

Geographical location latitude (N or S and 2 digits) 
Geographical location longitude (E or W and 3 digits), 
species codes. 

AUWAW Author, originator of recording. 



In order to easily access the various types of marine mammal sounds from the SOUND 

database for analysis, a shorter, simplified database was created for easier access to the required 

information. For each digitized data record chosen, this database contains the retrieval number 

of the record and the various types of sounds present, together with the common names and 

species codes of the marine mammals that created the sounds. For example, the entry in the new 

database for the record in table 1 that corresponds to striped dolphin sounds is simply: 

7200700l.kay - Striped dolphin BD15C, transient X 
(other species: sperm whale BA2A) 
Clicks and whistles. Water splashes. 

Based on the simplified database, the main marine mammals present in the sound cuts 

were grouped together with some types of recorded sounds, as outlined in table 3. Some of the 

more interesting artifacts in the data include a 12-kHz pinger, water splashes and droplets, 

reverberation, ship engine noise, and hydrophone bumps. It is also possible to audibly observe 

the data and to hear the time-frequency structure of the whistles that are present. In order to 

access the data from the digitized files, a MATLAB function (see section A. 1 in the appendix) 

was written to extract the header of each file and read the data. 



Table 5 I Marine Mammals and Some Typical Sounds Present in the Database 
Provided by the Woods Hole Oceanographic Institution 

Striped Dolphin (Stenella coeruleoalba) 
Other mammal present: Sperm Whale (Physeter catodon) 

• Clicks and whistles. Water splashes. 

• Clicks and whistles. 

• Clicks, pulsed clicks, and whistles. 

• Clicks and whistles. Water droplet. 

• Clicks and whistles. About 4 sp. whale clicks present on cut. 

White-Sided Dolphin (Lagenorhynchus acutus) 
Other mammal present: Finback Whale 

(Balaenoptera physalus) 
• Clicks, pulsed click burst 12-kHz pinger present. 

• Clicks, pulsed click burst. 

• Clicks. 

• Clicks and whistles. 

• Clicks and whistles. Reverberation. 

• Clicks, pulsed clicks. Reverberation. 

• Clicks and a whistle. Maruffa ship noise-crack. 

• Clicks and 3 whistles. Reverberation. 

• Clicks. Reverberation present. 

• Clicks, pulsed clicks, and a whistle. 

Spotted Dolphin (Stenella attenuata) 

• Whistle. Water splash. 

• Clicks. 

• Whistle and clicks. 

• Clicks and whistle. Water splash. 

• Clicks, pulsed clicks, and whistle. 

• Clicks, pulsed clicks, and whistle. 

• Clicks; pulsed clicks. 

9 



Table 3. Marine Mammals and Some Typical Sounds Present in the Database 
Provided Provided by the Woods Hole Oceanographic Institution (Cont'd) 

Spotted Dolphin (Stenella attenuata) 
Other mammals present: Humpback Whale (Megaptera novaeangliae) 
 and Sperm Whale (Physeter catodon)  
»    Many overlapping clicks; whistle. 

►    Ship's engine noise throughout. 

»    Many overlapping clicks, ship. 

»    Many overlapping clicks; pulsed clicks; whistle engine. 

Long-Finned Pilot Whale (Globicephala melaena) 
 Other mammal present: Sperm Whale (Physeter catodon) 
Fast click series. 

Fast click series. Ship noise (clunk). 

Clicks and whistles. Water splash. 

Clicks and whistles. 

Clicks, pulsed clicks, and whistles. 

Clicks, burst pulsed clicks, and whistles. 

Sperm whale clicks. Pilot whale clicks and whistles. Hydrophone bumps. 

Pilot whale clicks and whistles. Hydrophone bumps. 

Sperm whale clicks. Pilot whale clicks, pulsed clicks, and whistles. Splashes. 

Sperm whale clicks - skipped beats. Pilot whale clicks and whistles. 

Pilot whales - clicks, fast series of clicks, and whistles. 

Whistles. 

Chirps, whistles. Hydrophone bumps. 

Whistles. Hydrophone bumps. 

Chirps. 

Whistles. Water splash. 

Whistles and clicks. 

Whistles, pulsed clicks, chirps. Hydrophone bumps. 

Chirps; pulsed clicks. 

10 



2.2 CLICK AND WHISTLE SOUNDS 

Time-frequency techniques were used in this report to analyze clicks and whistles that 

were present in the data provided by WHOI. These were the main sounds produced by dolphins 

and whales; some characteristics of the sounds are given below. 

•     Clicks: Clicks are sonar signals that are used by marine mammals for echoloc- 

ation.1"7 Using its active and passive sonar capabilities in the form of click sounds, a 

marine mammal such as a dolphin or a whale can effectively probe its underwater 

environment for the purpose of navigation, obstacle and predator avoidance, and 

prey detection. Clicks consist of short-duration, broadband, transient-like pulses that 

are used by marine mammals to detect, localize, discriminate, and recognize various 

objects of interest such as prey, obstacles, and predators. Experiments have shown 

that a click has a short duration of 40 - 600 us and a 3-dB bandwidth of 4 - 60 kHz, 

depending on the species of the marine mammal.1 For example, the Pacific 

bottlenose dolphin has a 3-dB bandwidth of 30 - 60 kHz. As the data sampling rate 

is 166.666 kHz for the data provided, the broadband clicks extend over the full 

bandwidth of the data. Marine mammals emit bursts of clicks, called click trains, 

when searching for targets. The number of clicks and the time interval between 

clicks depend on various factors, such as the distance of interest, the difficulty in 

detecting a target, the presence or absence of a target of interest, and the mammal's 

expectation of finding a specific target. For example, it has been recorded that for 

the Atlantic bottlenose dolphin, the lag time between clicks ranged from 2.5 ms to 20 

ms for a target range of 0.4 m to 40 m.1 An example of a single sonar click in the 

time domain of a white-sided dolphin from data file 75001012.kay is shown in figure 

1(a). The click occurs at approximately 1.2396 s and has a duration of about 60 us. 

The Fourier transform (frequency domain) of the data segment is shown in figure 

1 (b), where the spectrum has large magnitude values over a broad range of 

frequencies. Indeed, the click is of short duration and is relatively broad band. 
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Figure 1. A Single Sonar Click of a White-Sided Dolphin from Data File 75001012.kay: 
(a) Signal in the Time Domain and (b) Fourier Transform of the Signal 
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•    Whistles: Whistles are non-echolocation signals that are predominantly emotional 
R 1A and communication sounds. "    They are long-duration, narrowband, frequency- 

modulated, continuous tonal sounds that are not used for active sonar searches. 

Whistles vary in frequency, duration, and in the shape of the whistle time-frequency 

structure depending on the nature of the signal's frequency modulation. For example, 

the frequency range of the dolphin whistles varies from 5 kHz to 15 kHz, and their 

duration varies from 0.5 s to 2 s. The whistles are used mainly for communication 

between the mammals in order to establish vocal contact. There are disputes as to 

whether each signature whistle identifies one animal from another. Studies have 

shown that dolphins in isolation have a characteristic signature whistle. When 

dolphins are in groups, however, they make various types of whistles, as they may 

have the ability to mimic each other's signature whistle.9 The frequency modulation 

in the whistle has a large variation between the different mammals, as the dominant 

frequency as a function of time changes in various ways. The characteristic whistle 

time-frequency structure may show a rise or a fall in frequency, it may be flat (no 

change in frequency), it may be falling hyperbolically (as 1/frequency), or it may be 

changing sinusoidally or as a function of some power.13 In many cases, the time- 

frequency structure may consist of a combination of various frequency modulation 

changes. As a result, the whistle's group delay time-frequency structure may change 

from mammal to mammal. Various classes of quadratic time-frequency 

representations are examined in this report for use as analysis tools for clicks and 

whistles. 
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3. CONSTANT TIME-SHIFT COVARIANT QTFRS 

3.1 COHEN'S QTFR CLASS 

A QTFR of a signal x(t), with Fourier transform defined as X(f) = J^ x(i)e~J2"°df', is 

a two-dimensional function of time t and frequency/denoted as Tx {t, f). Cohen's class20'30 

contains all QTFRs, denoted as Tx
C)(t, f) (the superscript (C) in the QTFR indicates that the 

QTFR is a member of Cohen's class), that satisfy the time-shift covariance and the frequency- 

shift covariance properties.18 The time-shift covariance property is defined as 

(SnX)(f) = e-™X(f)=>Tg>(t,f) = T<F>{t-j\, f), (1) 

where S^ is an operator that causes the signal to be shifted in time by an amount r|, and the 

double arrow implies the transformation from the analysis signal to the QTFR. Note that 

Tg (t, f) stands for T{C)(t,f), with Y(f) = (s^x) {/). Thus, equation (1) states that if a signal 

X(f) is time-shifted by an amount r|, then a Cohen's class QTFR TX
C) (t, f) is also shifted 

along the time axis by the same amount T^ {t -tj,f). The frequency-shift covariance property 

is defined as 

(MvX)(f) = X(f-v) => T(vx(t,ß = T<x
C)(t,f-v), (2) 

where Mv is an operator that causes the signal to be shifted in the frequency domain. Both the 

time-shift and frequency-shift covariance properties are important in applications where the 

signal needs to be analyzed at all time-frequency points with fixed time-frequency resolution. 

As a result, the QTFRs in Cohen's class exhibit analysis characteristics that do not change with 

time and frequency (constant bandwidth analysis), and preserve the signal's time and frequency 

shifts. This is important in applications such as speech analysis, narrowband Doppler systems, 

and multipath environments. 
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Based on these two covariance properties, any member of Cohen's class can be written as 

= f [Wff-f. v)Ux(f,vy2™dfd» 
J~0O   J-00 

(3) 

(4) 

where 0£g(/ v) = r(
r
C) f , f + —   is a two-dimensional function (or kernel) that uniquely 

V        2 2) 

characterizes the Cohen's class QTFR fC), and the signal product is defined as 

(        v\       (        v\ 
Ux{f,v)=X f + -X-   /-- 

The Wigner distribution18'22 is an important member of Cohen's class, as it satisfies many 

desirable QTFR properties. It is defined as 

f       „\ 
WDx(t.J) = £X [f + 1 U1/~ Y^dv = [ux(f,v)e^dv, (5) 

V       *J 

and has the kernel <J>^ (/ v) =8 (/) in equation (4). The Wigner distribution exhibits high 

time-frequency localization for signals such as sinusoids, impulses, and linear chirps. However, 

due to its quadratic nature, the Wigner distribution suffers from interference or cross terms when 

multicomponent signals are analyzed. Cross terms may impede signal analysis depending on the 
N 

application. In particular, the Wigner distribution of an N component signal X(f) = ^X^f) 
i=i 

is given by 

N    p-\ 

WDx(t,fi   =   YWDx(t,f)   +   2YJJJRe{WDXp,Xq(t,m, 
p=2   g=\ 

(6) 
i=i 

16 



where WDX , x (t,f) is the cross-Wigner distribution of Xp(f) and X (f) (defined in 

equation (5)), with Xand X* replaced by^, and X*, respectively.49 Thus, the Wigner 

distribution of the multicomponent signal X{f) consists of the sum of N auto terms and the sum of 

N(N-1) —y-j—- cross terms. 

In practical applications, the cross terms in equation (6) can be attenuated by smoothing 

the Wigner distribution. Note that any member of Cohen's class can be written as a smoothed 

Wigner distribution using 

T?(t.j) =  r f V(
T
C)(t-i,f-})WDxCt,})dii, (7) 

J-00   «f-00 

where yi(j}(t, f) =  h«, 0£Q (f, v)e j2lüvdv. Thus, the cross terms in equation (6) can be reduced by 

choosing the kernel y/^ft, f)  in equation (7) accordingly. Specifically, the spectrogram23'24 

SPECx{t,f) uses an analysis window T{f) to reduce cross terms. The kernel of the spectrogram 

in equation (7) is the Wigner distribution of the smoothing window T(f), i.e., 

VSPEC (t'f) = WDr (-t, -f). Inserting this kernel in equation (7), the spectrogram can be defined 

as a smoothed Wigner distribution 

SPECx(t,fi= [x[WDr(t-t,f-J)WDx(t,j)didf=  lx(f)f(f-f)e^df (8) 

Note that equation (8) shows that the spectrogram can also be defined as the squared magnitude 

of the short time-Fourier-transform, linear time-frequency representation.18 
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As the smoothing kernel of the spectrogram is the Wigner distribution of a window, the 

spectrogram cannot simultaneously provide a small amount of smoothing in both the time and 

frequency directions. On the other hand, the smoothed pseudo-Wigner distribution uses two 

windows to provide independent time and frequency smoothing. The smoothed pseudo-Wigner 

distribution SPWDx(t,f) uses a separable kernel y/fpWD(t,f) = g{t)H{f) in equation (7), where 

g(i) and H(/) are two analysis windows; it is defined as 

SPWDx(t,f) =  T rg(t-i)H(f-f)WDx(t,f)didf. (9) 
J-03   J-OD 

3.2    AFFINE QTFR CLASS 

The affine class19,26'31'32 contains all QTFRs (T^ft.fi) that satisfy the time-shift 

covariance property in equation (1), and the scale covariance property defined as 

(CaX)(f) = -i=x(£\ => T(
c
AUt,f) = T<X

A>(~< f 1 

\aj 
at, (10) 

The scale covariance property is important for multiscale analysis, scale covariant 

systems, the wideband Doppler effect, and detecting short-duration transients. Thus, affine 

QTFRs are used in applications such as image enlargement and data compression, where it is 

desirable to preserve dilations or scale changes on the analysis signal. Many affine QTFRs are 

used for constant-Q time-frequency analysis, where the analysis bandwidth is proportional to the 

analysis frequency. This provides an alternative to the constant bandwidth analysis achieved by 

Cohen's class QTFRs. 

Based on the time-shift covariance property and the scale covariance property, any affine 

class QTFR can be written as 

18 



(ID 

=ArRi-z>- Ux(f,v)e]ln,vdfdv, (12) 

whereOf (b, ß) = r/ (A) -f /? is a two-dimensional kernel that uniquely 

characterizes the affine QTFR T{A) and the signal product Ux (f, v) that is defined in equation 

(4). The Wigner distribution in equation (5) is also a member of the affine class. Another 

important member of the affine class is the scalogram, which is defined as the squared magnitude 

of the wavelet transform 19,26 
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4. GENERALIZED TIME-SHIFT COVARIANT QTFRs 

The generalized time-shift covariant QTFR classes36'38'41'44'50'51 consist of QTFRs that 

are covariant to frequency-dependent time shifts x(f) that can be selected to match the group 

delay function of the analysis signal. The generalized time-shift covariance property is important 

for analyzing signals passing through systems with dispersive characteristics corresponding to 

specific group delay functions. For QTFR Tx(t,f), the generalized time-shift covariance 

property is defined as 

TD[Vx(t,f) = Tx(t-CT(f),f), (13) 

where the generalized time-shift covariance operator is given by 

(D?>X)(f) = er>»*<i>X(f). (14) 

Here, ^(b) is a one-to-one phase function, the time shift or group delay t (/) = —£, 
df 

ff^ 
is the 

\frj 

derivative of the phase function, and fr > 0 is a fixed reference frequency. Different generalized 

time shifts are obtained by fixing E,(b) and x(f) in equations (13) and (14). Some special cases of 

generalized time shifts include: 

• constant (nondispersive) time shifts in Cohen's class or the affine class when 

%b) = b and T(f)=jr 
J r 

• hyperbolic time shifts in the hyperbolic class when E,(b) ~ In b (b > 0) and x(f) = — 

Note that D    in equation (14) simplifies to S^ in equation (1) when ^(b) = b and r| = — 

fr 
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Kth power time shifts in the Kth power class, K * 0, when t,(b) = £,K(b) = 

sgn(^)|6|K,where sgn(6) is -1 for b < 0, 1 for b>0, and 0 for b = 0, and 

K-l 

/ 
</■) = *,(/■) = 7- 

J r fr 

exponential time shifts in the exponential class when £, (b) = e and r(/) = —e/r . 
7 r 

Thus, generalized time-shift covariant QTFRs unify existing QTFR classes, such as Cohen's 

class, the affine class, the hyperbolic class, the power classes, and the exponential class. They 

are important QTFR classes for analyzing signals passing through dispersive systems and are 

specifically suited for signals whose group delay is proportional to the time shift x(f). 

Generalized time-shift covariant QTFR classes can be obtained by warping existing 

constant time-shift covariant classes such as Cohen's class and the affine class.  '   ' l' 4' 

The form of the warping is fixed by the choice of l,(b) in the desirable generalized time-shift 

covariance property in equations (13) and (14).38'41'50 The QTFR warping is given by 

T<(G class) 
' X (Uf) = Tt 

(class) 

frT(f) 
,f£ 

\fr JJ 
(15) 

where the generalized time-shift warping operator is defined as 

(w<x)0) = 
1 

X 

Z(^(f7r)) 
f£- 

\frJJ 
(16) 

Here, the inverse function £,~l(b) is such that ^'l(t,(b)) = b and £'(b) = —£ (b). The superscript 
db 

(class) indicates which QTFR class undergoes the warping in equation (15). When (class) = (C), 
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corresponding to Cohen's class, then Cohen's class QTFRs T^if, f) are warped using equation 

(15) to obtain the generalized warped Cohen's class QTFRsTffC)(t, f). Similarly, when 

(class) = (A), corresponding to the affine class, then affine class QTFRs T<A){t, f) are warped 

using equation (15) to obtain the generalized warped affine class QTFRs T^A)(t, f). The 

generalized warped QTFRs always satisfy the generalized time-shift covariance in equation (13) 

for a given one-to-one function Z,(b) because the warping maps the constant time-shift operator 

S c  in equation (1) of Cohen's class or the affine class to the generalized time-shift operator D\ 

in equation (14) using W'lScW( = Dc
(f), where W'1 is such that (wf^xfo) = X(f). The 

generalized warped QTFRs also satisfy an additional covariance property that depends on t,(b). 50 

4.1 GENERALIZED WARPED COHEN'S CLASS 

4.1.1 Generalized Warped Cohen's Class Formulation and Covariance Properties 

The generalized warped Cohen's class (GC) is obtained by warping Cohen's class 

QTFRs  '    using equation (15) with (class) = (C). Applying the warping in equation (15) to 

Cohen's class QTFR formulation in equations (3) and (4), any GC QTFR can be expressed 

as 36,38,41,44,50,51 

nGc)o,f)=ffrr) 
J-oo J-oD 

\JrJ 
~\ 

\frj 
.\ 

\fr) \frJJ 
Mf\MfJ\ 

j2n-±-ft,(£-) -  %(£-)] 
>X(fOr(f2)e    *<n    /,    */,  dfxdf2, (17) 

J—00 
i b,ß 

7271—-P 

Vx(b,ß)e    *(f) dbdß, (18) 
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where <D<G c\b,ß) = T. (GC) 

[2 2 

>\ 
is a two-dimensional kernel function that uniquely 

characterizes the GC QTFR T(GQ. The signal function Vx(b, /?)in equation (18) is given by 

Vx(b,ß) = frUw,x(frb,frß) = fr(W,X){frb +fl](W,X){frb -f£ 
■J \ ■J 

=   fr <T b + ß ? 
\     V      *JJ 

<f b- ß 
V     V      ^JJ 

X ff 
(     /?^ ß b + x 

r     ß\ 
f£ -1 ß b ,  (19) 

where the signal product Ux(f,v) is given in equation (4) and the warped signal WiX{f) is 

defined in equation (16). Note that the GC formulation in equations (17) and (18) generalizes 

Cohen's class since, when Z,(b) = b, equations (17) and (18) simplify to Cohen's class 

formulation in equations (3) and (4) with T^fa.b;) =frT$c){frbl,frbz) and 

<&{fc\b,ß) =fr®f> (frb,frß), respectively. 

Due to the warping, the constant time-shift covariance property in equation (1) and the 

frequency-shift covariance property in equation (2) in Cohen's class are transformed into two 

new covariance properties in the GC. As a result, any GC QTFR TX
C) (t, f) satisfies the 

generalized time-shift covariance property in equations (13) and (14), and the generalized 

warped frequency-shift covariance property defined as 

rp(GC) /j     f   \    _    rp(GC) 
1
y(vk>x{^J ) - *X 

l(f) J 
(20) 

where y{f,v) = £' i V 

Jr 
The covariance property in equation (20) follows from the 

mapping of the frequency shift operator (Mv in equation (2)) in Cohen's class to 

W:lMvWf = Y^\ which transforms the signal as 
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V 
(y["X)(f) = 

-1 \fr) 
%'(y(f,v))\ x(fry(fy))- (21) 

The covariance property in equations (20) - (21) may or may not be useful in a particular 

application, depending on the choice of L,{b). For Z,(b) - In b and v =fr\rva, the covariance 

property in equation (20) simplifies to the scale covariance property in equation (10), which is an 

important property for multiresolution analysis. Furthermore, the operator in equation (21) 

simplifies to the scale operator in equation (10), since (yfi„aX)(f) = (CaX)(f) and the 

corresponding GC is the hyperbolic class34'35 (see table 4). 

4.1.2 Generalized Warped Cohen's Class Members 

GC QTFRs can be obtained by warping Cohen's class QTFRs using equation (15), and 

are defined by fixing the kernel (S>fC)(b, ß) in equation (18). An important GC member that 

satisfies many desirable QTFR properties is the generalized warped Wigner distribution 

(GWWD) WDyif, f). The GWWD is obtained by warping the well-known Wigner distribution 

in equation (5) using equation (15). Thus, the GWWD is defined as 

>fe) WDf(t,f) = WD, 
frr(0 

JA 
fr J-00 

£    — 
fr 

ß 
\            t 

j2n ß 
e    wdß, (22) 

\Jr J       J 

and its kernel in equation (18) isoD^j (b, ß) = 8 (b). Note that equation (22) simplifies to the 

Wigner distribution in equation (5) when t/ifi) = b and x(f) = —. The GWWD provides good 
Jr 

time-frequency resolution for various analysis signals36 and is ideally matched to signals whose 

group delay equals the generalized time shift that is preserved by the GWWD.56'57 The 

generalized impulse is a nonstationary signal defined in the frequency domain as 
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liU(f) = J^(f)\e-J2^:<P, (23) 

with phase function g(b) and group delay function ct(f) - c—<f 
df 

. When the one-to-one 

function £(b) of the GWWD equals the phase function g(b) of the generalized impulse, the 

GWWD of the generalized impulse is simply a Dirac delta function centered along the impulse's 

group delay, i.e., 

WD%(t,f) = \z(f)\8(t-cx(f)) if, and only if, %(b)=%(b). (24) 

Thus, the GWWD is ideally matched to generalized impulses as it provides high time-frequency 

localization along the signal's group delay characteristics. Just like the Wigner distribution, the 

GWWD suffers from cross terms when multicomponent signals are analyzed. For example, if 

the signal consists of the sum of two generalized impulses X(f) = ij!''(f) + I^{f), then the 

GWWD results in the sum of two auto terms and one cross term. The auto terms WDfy (t, f) 

and WD^l (t, f) are defined in equation (24). The cross term 

Cf*, (t,f) = 2cos 27c(c,-c2;S 
\Jr JJ 

k/vi5 
f
     c +c ^ 
t-^-T(f) 

V l J 
(25) 

is centered along the group delay curve t = 
cx +c2 r(/) and oscillates at a frequency that 

increases as the parameter difference (c\ - ci) increases. 
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In many practical applications, it is important to reduce cross terms by means of 

smoothing the GWWD. Specifically, any member of the GC can be written as a smoothed 

version of the GWWD (WD%' (t, f) in equation (22)) using a smoothing kernel VJ/ f     (c,b), i.e., 

J-00   J-00 *<f) 1(f) 
.% 

ff? 
\Jr J \f JJ 

WD^'(t,f)dtdf, 

where \/(T
GC)(c,b) =  r®(

T
GC)(b,P)eJ2ltt*dp (equation (18)). A GCQTFR that applies 

smoothing to reduce cross terms in the time-frequency plane is the generalized warped 

spectrogram that is obtained by warping the spectrogram in equation (8) using equation (15). 

This generalized warped spectrogram uses a window to reduce cross terms. More smoothing is 

provided by the generalized warped smoothed pseudo-Wigner distribution that is obtained by 

warping the smoothed pseudo-Wigner distribution in equation (9) using equation (15). This is 

because the generalized warped smoothed pseudo-Wigner distribution uses two windows that 

can smooth out cross terms independently along the time direction and along the group delay 

z(f) direction. 

4.1.3 Generalized Warped Cohen's Class Examples 

Different GC QTFR classes can be obtained simply by choosing a one-to-one, 

differentiable, and invertible function Zj(b) in equations (17) or (18). Depending on L,(b), the 

covariance properties in equations (13) and (20) may be useful depending on the analysis 

application at hand. Examples of the generalized warped Cohen's class are the hyperbolic class 

and the Kth-power warped Cohen's class; these are listed below and, together with some 

additional examples, are summarized in table 4. 
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1. Hyperbolic class: When £,(Z>) = In b and x(f) = — , f > 0, the corresponding GC in 

equation (18) is the hyperbolic class.29,33"36 Thus, any member of the hyperbolic class Tx"\t,f) 

can be written as 

T{H)(t,f) = r r 0 
J-CC   J-00 

\n^- - b,ß 
V      fr 

V<
x
H)(b,ß)ei2nmdbdß, 

where ® j.w'(Z>,/?) = <5^GC\b,ß)(equation (18)) is a two-dimensional kernel that uniquely 

characterizes the hyperbolic QTFR T(H), and Vx
H\b,ß) is the signal product Vx(b,ß) in equation 

(18) when E,(b) = In b. Any member of the hyperbolic class satisfies two covariance properties 

that are special cases of the two covariance properties satisfied by all GC QTFRs. Specifically, 

the generalized time-shift covariance of the GC in equation (13) simplifies to the hyperbolic 

f      c      \ 
time-shift covariance of the hyperbolic class defined as T^ (t,f) = Tx

H>   t-—,f  , since 
\     J      J 

"1* $ c "in = Dc    = Hc (note that W\n is the warping operator W^ in equation (16) when 
fr 

£, (b) = \nb, and D^n) is defined in equation (14) with t, (b) = \nb). The generalized warped 

frequency-shift covariance in equations (20) and (21) simplifies to the scale covariance in 

v 

equation (10), since W^ MvWin = y\" = CJr ; thus, hyperbolic class QTFRs preserve hyperbolic 

time shifts and scale changes on the analysis signal. An important member of the hyperbolic 

class is the Altes Q-distribution27"29 which corresponds to the generalized warped Wigner 

distribution in equation (22) when l,(b) = In b. The Altes Q-distribution is defined as 

ADx(t,f) = f f X(Je~i)X'(fe~T)e]7**<® , (26) 
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and is ideal for analyzing signals with hyperbolic group delay characteristics such as Doppler- 

invariant signals that are similar to the signals used by bats for echolocation.58 For example, the 

Altes Q-distribution of a hyperbolic impulse, defined in the frequency domain as 

I        -j2nc\n — 

X\f) = —F=e       Jr for/ > 0, is a Dirac delta function centered at the signal's group delay 

function, i.e., ADX (t,f) = —ö t  
V      fj 

, f > 0. Note that this is a special case of equations 

1 
(23) and (24) when £,(b) = \ab and x (/") 

2. Kth-power warped Cohen's class: When ^(b) = £K{b) = sgn(b)\b\K, K ^0, and 

<f)=rK(f) = f 
J r 

f 
K-l 

the GC in equation (18) is the Kth power warped Cohen's 
fr 

class.36'41'50 The generalized time-shift covariance of the GC in equation (13) simplifies to the 

Kth power time-shift covariance defined as T^ (t,j)   =   TfC)(t-cxK(f),f), since 

W^ Sc W£  = D™> (where Df'^and W^ are defined in equations (14) and (16), respectively, 
Jr 

with t(b) = t,K(b)), but equation (20) does not simplify to any known covariance. Members of 

this class include the Kth power Wigner distribution and the power spectrogram.41'50 
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Table 4. Examples ofQTFR Classes from the Generalized Warped Cohen's Class with 
Associated Function l,(b), Generalized Time Shift xif), and Covariance Operators 

Corresponding to Equations (13) - (14) and (20) - (21) 

Characteristic 
Class Functions 

Examples of Generalized Warped Cohen's Class 

Cohen's 
Class 

Hyperbolic 
Class 

Kth Power Warped 
Cohen's Class 

Exponential 
Warped 

Cohen's Class 

Function £(b) b In b SK(*) eb 

Generalized Time Shift x\f) 1 

Jr 

1 

7 
*K</) 

f 

ef> 

fr 

Covariance Operator D^' in 

Equation (14) fr 

HC=D™ n&c) 1Jc 
ec=Dfv) 

Covariance Property in Equation 
(13) 

Constant 
Time-Shift 

Hyperbolic 
Time-Shift 

Power 
Time-Shift 

Exponential 
Time-Shift 

(t) ■ Covariance Operator y^°' in 

Equation (21) 

Mv c.i y^r v(exp) 

Covariance Property in Equation 
(20) 

Frequency- 
Shift 

Scale Power Warped 
Frequency-Shift 

Exponential 
Warped 

Frequency-Shift 

4.2 GENERALIZED WARPED AFFINE CLASS 

4.2.1 Generalized Warped Affine Class Formulation and Covariance Properties 

The generalized warped affine class (GA) is obtained by warping the time-shift and scale 

covariant affine QTFR class19'26,31'32 using equation (15) with (class) = (A). Similar to the 

generalized warped Cohen's class, the GA is a generalized time-shift covariant class, since both 

the GC and the GA are obtained by warping constant time-shift covariant classes using equation 

(15). However, in comparison to GC QFTRs, the GA satisfies an additional covariance property 

that is based on the scale covariance property of the affine class; thus, it yields new QTFRs that 

are useful in different type of applications. Applying the warping in equation (15) to the affine 

class QTFR formulation in equations (11) and (12), any GA QTFR can be written as 
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T™(t,j) = — f fr: 
f J-00   J-00 ((f) 

f r 

(GA) 
T 

f f f       \ ((f)     ((f) 
J r J r 

f   '     f ((f) ((f) 
Jr Jr 

if HA} 

-X(fJX (f2)e    «®   Uj    ^rdfxdf2, 
juJ-dl- Uf-|7 

(27) 

1 

((jr) 
J r 

J-00 

(GA) 
T 

ß 
f      ' f ((f)      ((f) 

Jr Jr     J 

jln- 
Vx(b,ß)e    Wdbdß, 

(28) 

where Vx(b,$) is defined in equation (19) and <S>(T
GA)(b,ß) = r(GA)(-b + ^,  -b - $-) is a two- 

dimensional kernel function that uniquely characterizes the GA QTFR J<GA\ The kernels in 

equations (27) and (28) are identical in form to the corresponding affine class kernels in 

equations (11) and (12), i.e., r(GA)(blßb2) = r(
T
A)(b,,b2) and <P(

T
GA)(b,ß) = 4>(A>(b,ß),36 Thus, if 

the kernel of an affine QTFR is known, then the corresponding generalized warped version of 

that affine QTFR uses the same kernel function. The GA provides a generalization of the affine 

class since, when £ (b) = b,ÜieGA QTFR formulation in equations (27) and (28) simplifies to the 

affine class QTFR formulation in equations (11) and (12), respectively. 

Due to the warping, the constant time-shift covariance property in equation (1) of the 

affine class QTFRs is transformed to the generalized time-shift covariance property in equations 

(13) and (14) of the GA QTFRs. Similarly, the scale covariance property in equation (10) of the 

affine class QTFRs is transformed to the generalized warped scale covariance property defined 

as 

f        ,       .      x \ 

Tfaf(t,f) = T, (GA) 
X at 

\frAf")) 
<f) 

,fl{fa) (29) 
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-1,1*,/ where l( f,a) = £   (—^(^j-)) • The covariance property in equation (29) follows since the 
a        Jr 

scale operator Ca in the affine class maps to W* CaW( = L(
a
iJ, which transforms the signal as 

(L«>X)(f) J r 

\at'(l(f,a))\ 
X(fMf.a)). (30) 

The covariance property in equation (29) is not easy to understand, but simplifies to 

known covariance properties for the following functions: when Z,(b) = Z,K(b) = sgn(b)\b\K 

equation (29) results in the scale covariance property in equation (10) since 

W^xCaWi  = L
(

0
K)

 = C? /K(a).  When h,{b) = lnZ>, equation (29) results in the power warping 

covariance property34'36 defined as 

T^jft,/) = n fr^(f) 
V a 

,/A, 
av/ J 

since W^CaWXn = L(*n) = ^ (where £a(b) = sgn(b)\b\°\  Furthermore, when £j(b) = eb, 

equation (29) results in the frequency-shift covariance property in equation (2) since 

K
C

*
W

«P = L<?p) = M/A~ <see table 5>- 

32 



Table 5. Examples ofQTFR Classes from the Generalized Warped Affine Class with 
Associated Function ~t,(b), Generalized Time Shift x(f), and Covariance Operators 

Corresponding to Equations (13) - (14) and (29) - (30) 

Characteristic 
Class Functions 

Examples of Generalized Warped Affine Class 

AffineClass 

Hyperbolic- 
ally Warped 
Affine Class 

Kth Power 
Class 

Exponential 
Class 

Function £{b) b lnZ> $K0) / 

Generalized Time Shift T(/) 1 

fr 

1 

f 
*K(/) 1    7, r 

Covariance Operator D^ ' in 

Equation (14) fr 

HC=D™ D?K) K=D<T> 

Covariance Property in Equation 
(13) 

Constant 
Time-Shift 

Hyperbolic 
Time-Shift 

Power 
Time-shift 

Exponential 
Time-shift 

Covariance Operator Is§' in 

Equation (30) 

ca 
Sa 

r %lna 

Covariance Property in Equation 
(29) 

Scale Power 
Warping 

Scale Frequency-Shift 

4.2.2 Generalized Warped Affine Class Members 

GA QTFRs are specified by their kernel O^, A\b, ß) in equation (28) and are obtained 

simply by warping known affine class QTFRs. One important member of the GA is the 

generalized warped Wigner distribution discussed in section 4.1.2 that is obtained by warping the 

Wigner distribution as in equation (22). Since the Wigner distribution is a member of the 

intersection between Cohen's class and the affine class, the generalized warped Wigner 

distribution in equation (22) is a member of the intersection between the GC and the GA. 

Another important member of the GA that may be used to remove cross terms in multicomponent 

signal analysis applications is the generalized warped version of the scalogram, which is the 

generalized warped version of the squared magnitude of the wavelet transform.50 
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4.2.3 Generalized Warped Affine Class Examples 

The generalized warped affine power class and exponential class examples listed below 

are obtained by appropriately choosing the one-to-one, differentiable, and invertible function 

£,(b) in equations (27) or (28). Note that the classes are also summarized in table 5 with some 

additional examples. 

K-l 

/ 1. Power class: When £(b) = £K(b) = sgn(b)\b\  and x(f) = ijf) = K 

fr f. 
36-40 the corresponding GA class in equation (28) is the Kth power class K * 0.        Any member of the 

Kth power class can be written as 

T^(tJ) 
1 

f (— ) 
r r* J-00  J-co 

(P) 
T 

-b ß 

Jr Jr     J 

V^(b,ß)e 
j2n- 

dbdß , 

-ch<GA) where 0'T '(b,ß) = <£>(r   '(b,ß) (equation (28)) is a two-dimensional kernel that uniquely 

characterizes the power QTFR T( K , and Vx 
K'(b,ß) is the signal product Vx(b, ß) inequation 

(28) when £(b) = £K(b).  Power class QTFRs satisfy two simplified covariance properties that 

correspond to the generalized time-shift covariance in equation (13) and the generalized warped 

scale covariance in equation (29) when £,{b) = £,K (b). Thus, power class QTFRs satisfy the 

power time-shift covariance properly defined as T(^h\>x (t>f) = Tx
P,c)(t-cxK(f),f) , since 

w{!ScW^K =
D

?
K)

- Note that D^
K)
 is defined in equation (14) with ~t(b) = $K(b), and W^ is 

"fr 

defined in equation (16) with <^(b) = £Jb).  Power QTFRs also satisfy the scale covariance 

property in equation (10) since W^lCaW^   = I!^
K)
 = Cf (a).  Thus, power QTFRs are useful for 

K 

analyzing signals passing through systems with power time-frequency characteristics. An 

important member of the Kth power class is the Kth power Wigner distribution,  '    which is the 
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generalized warped Wigner distribution in equation (22) when £,(b) = ^Jb).  The Kth power 

Wigner distribution is defined as 

WD[*>(t,f) = f>k i+ ß x 
JJ 

K: 
( ßW   „J 
i- 

V      2y; 
e    K 1 

^dß, 

t 
4 

2K 

(31) 

and it reduces to the Wigner distribution when K = 1. Another important member of the Kth 

power class is the powergram, which is the squared magnitude of a power wavelet transform.37 

2. Exponential class: When t,(b) = eb and z(f) = —efr, the corresponding GA class 
J r 

in equation (28) is the exponential class.41'42'50 The generalized time-shift covariance property 

in equation (13) simplifies to the exponential time-shift covariance property defined as 

Tg>(t,f) = T<GA)(t-fef', f), since W^pSJVexp = D™ = Ec.  Here, D(
c
exp> and We]ip are 

defined in equations (14) and (16), respectively, with ^(b) = e .  Moreover, the generalized 

warped scale covariance property in equation (29) simplifies to the frequency-shift covariance in 

equation (2) since ^e~pCafTexp = Ir
a
exp) = Mflna. Some important members of the exponential 

class include the exponential Wigner distribution and the exponogram.42 
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5. IMPLEMENTATION OF GENERALIZED TIME-SHIFT COVARIANT QTFRs, 
INCLUDING POWER CLASS QTFRs 

The GC and GA QTFRs can be implemented directly using their formulation in equations 

(18) and (28), respectively. However, the direct implementation technique is computationally 

intensive, as it involves a two-dimensional integration. A less complicated technique is to 

implement the warping transformation in equation (15) because algorithms already exist to 

compute Cohen's class QTFRs and affine class QTFRs, and the only new algorithms needed are 

the ones to warp the analysis signal as in equation (16), and to transform the time-frequency axes 

as in equation (15). For example, the Altes Q-distribution in section 4.1.3 can be computed 

directly using equation (26) or indirectly as the hyperbolically warped version of the Wigner 

distribution in equation (5), i.e., 

ADx(t,j) = WD, w,„ x 
fr fr 

, where (WlnX)(f) = ief> X (32) 

Note that equation (32) corresponds to the warping in equations (15) and (16) with £(Z>) = In b. 

Since simple and efficient algorithms exist to compute the Wigner distribution in equation (5), to 

compute the Altes Q-distribution, the signal must first be warped with the exponential mapping 

X(f) —>• (WlllX)(/), then the Wigner distribution of the warped signal must be computed, and 

finally the time and frequency axes must be transformed for the correct time-frequency 

localization using (t,f) tfJnL 27,29 Similarly, any member of the hyperbolic class 

can be implemented in the same way simply by replacing the Wigner distribution in equation 

(32) with the corresponding member of Cohen's class.34 Documented discrete implementation 

realization of the hyperbolic class using the warping approach, the power class QTFRs,3 '37 and 

the exponential class QTFRs41'42 by appropriately warping the affine class QTFRs can be found 

in Canfield59 and Praveenkumar.60 An in-depth description of the three steps of the discrete 
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implementation of the power class QTFRs is provided in Hlawatsch.    The discrete 

implementation of the exponential class QTFRs was also realized, and the necessary 

computational steps were documented and can be found in Papandreou-Suppappola. 

As presented in section 4.2.3, any Kth power QTFR T(
x
PJ(t,f) can be obtained by 

warping a corresponding affine class QTFR T(
x
A)(t,f) using equations (15) and (16) with 

£(b) = Ub) = sgn(b)\b\\ i.e., 

Tp'O.f) = T% frrJf)'Jr Af/ 
(33) 

where the power warping operator is defined as 

(WKX)(f) = f 
fr 

1-K 

2K ( f     A 

V K     J ?    J 

X (34) 

The discrete implementation of power QTFRs is based on the warping relations in equations (33) 

and (34), which allow the use of existing efficient algorithms for computing affine class 

QTFRs.61 This implementation technique is conceptually similar to the implementation 

technique used for hyperbolic class QTFRs34 in Canfield59 and Praveenkumar.60 The first step 

consists of a power-law frequency warping of the signal X(f) according to equation (34), the next 

step is a computation of the affine QTFR of the warped signal T^x(t,f), and lastly a nonlinear 

time-frequency coordinate transform is performed according to equation (33), i.e., 

(t.f)-+ fcJf) \frJJ 
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For the discrete implementation of the first step, the discrete version of the signal's 

Fourier transform Xfl] (I = 0,l,...,L-l) with frequency sample spacing A/is first 

interpolated (upsampled) by factor u, yielding the Fourier transform samples 

X'' [V] (I' = 0,l,...,uL-\).  Next, discrete warped-frequency locations are computed according 

to equation (34), such that uniform sampling of the warped-frequency axis is achieved; these 

discrete warped-frequency locations are given by fm = ft /wAu 

/, 
(m = 0,1,...,M-I), 

where Au is the frequency sample spacing of the warped Fourier transform, computed such that 

\fm+i ~ fm\ - 4/,Vm, and M is the number of warped Fourier transform samples required to 

represent the entire frequency domain. The Fourier transform value at each warped-frequency 

location fm is obtained by linear interpolation of the closest neighbors in the upsampled Fourier 

transform X'[l']. This gives a discrete warped-frequency Fourier transform 

YfmJ (m = 0,1,... ,M -1).  In order to avoid time-aliasing effects in the subsequent 

computation of the affine QTFR, the warped-frequency Fourier transform Y[m] is finally 

interpolated (upsampled) to bandlimit the Fourier transform to one quarter of the sampling rate, 

yielding Y'fm'J (m' = 0,1,... ,M'-\), where M' = 2M. 

In the second step, a discrete-time, discrete-frequency version of the affine QTFR 

Ty-   (^/)26,61 is computed for the warped-frequency signal Y'[m']. The last step computes the 

f \ 

warped time-frequency locations (tn, fi\) = 

n 

Jr 
fr*«(fi) 

./, , where 

/,    =   fri. 
*A/ 

\JrJ 
/ 

'Au^ 

yJr J 
(n,i - 0,l,...,L-l), such that uniform two-dimensional sampling in the 

warped time-frequency domain is achieved, and subsequently calculates the corresponding 

sample values T^A)(tn,fi) using linear two-dimensional interpolation. Note that the Kth power- 

warped Cohen's class in section 4.1.3 can be implemented using the same three steps above, 
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except that the affine class QTFR in the second step must be replaced with a Cohen's class 

QTFR. The MATLAB program for the implementation of the power Wigner distribution is 

given in section A.2 in the appendix. The power Wigner distribution in equation (31) is obtained 

by warping the affine Wigner distribution using equations (33) and (34).36'37 
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6. TIME-FREQUENCY ANALYSIS OF SONAR CLICKS 

As clicks are short-duration pulses (impulse like) in time and thus broadband in 

frequency, they are expected to have constant group delay characteristics. As a result, clicks 

may be analyzed by QTFRs that preserve constant group delay characteristics in the time- 

frequency plane. Thus, clicks may be well matched to Cohen's class of time-frequency shift 

covariant QTFRs, such as the Wigner distribution and the spectrogram presented in section 3.1. 

As the sound records have long sample durations, the MATLAB function in section A. 1 

in the appendix allows small sections of the data to be read, starting at a sample offset. The 

MATLAB function in section A.3 in the appendix plots the data section in time and frequency, 

and also computes its Wigner distribution and spectrogram. This function is used to analyze a 

single click as the click duration is small, extending only over a small section of data samples. 

\ -J'2KC~ 

The Wigner distribution of the impulse X(f) = —f=e      lr is a Dirac delta function centered 

c                                \           c 
at the signal's constant group delay function / = —, i.e., WDx(t,f) = -^h(t ). Note that 

Jr Jr J r 

this is a special case of the GWWD of a generalized impulse when \(b) = b and x( f) = — in 
J r 

equations (23) and (24). Thus, as the click shows similar time-frequency characteristics as an 

impulse, it is expected that the Wigner distribution of a single click will have a very short time 

duration, equivalent to the duration of a click, that extends over many frequencies due to its 

broadband nature. For example, the time domain signal is plotted in figure 2(a); for comparison, 

the Wigner distribution of a single click (shown in figure 1) of a white-sided dolphin from file 

75001012.kay is shown in figure 2(b). Indeed, the Wigner distribution shows that the click has a 

short duration and is relatively broadband. Thus, the Wigner distribution provides good time- 

frequency resolution for single clicks. Note that although the data were filtered to remove low 

frequencies due to recording equipment or engine noise, the data is still noisy, and the Wigner 

distribution shows some interference terms. This interference is further removed using the 

spectrogram in equation (8) as shown in figure 2(c), but since the spectrogram uses a window to 
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smooth out the interference, it is not as localized as the Wigner distribution. Clicks can also be 

analyzed by other Cohen's class QTFRs, such as the pseudo-Wigner distribution and the 

smoothed pseudo-Wigner distribution using the MATLAB function given in section A.4 in the 

appendix. For comparison, this function also computes some hyperbolic QTFRs (section 4.1.3) 

such as the Altes Q-distribution and the pseudo-Altes Q-distribution, and some power QTFRs 

(section 4.2.3), such as the power Wigner distribution and the power pseudo-Wigner distribution. 

The hyperbolic QTFRs and the power QTFRs are not matched to signals with a constant group 
c£   en 

delay function,  '    thus, they are not ideal for the analysis of clicks. 

The smoothed versions of the Wigner distribution, such as the spectrogram or the pseudo- 

Wigner distribution, are important when a click train is analyzed (versus a single click), as they 

reduce the oscillatory cross terms that result in the Wigner distribution (equation (6)) that may 

impede analysis. Figure 3(a) shows a series of clicks (click trains) in time of a long-finned pilot 

whale from data file 7501000l.kay. The Wigner distribution in figure 3(b) suffers from cross 

terms between any two-click terms and from the noise present in the data. For the sum of two 

1 -jlnc,-" -j2-a.c2 — 
impulses, X(f) = -j=(e       Jr + e        }r), the Wigner distribution results in the sum of two 

Ifr 

\              c                   c 
auto terms —(8(7 -) + 8(7 -)) and in one cross term given by 

Jr Jr Jr 

2 
—cos 
J r 

2TC(C] — c2) 

V fr 
t        '      2 Thus, the cross term oscillates in the frequency 

V 2/r 

direction and is centered at t = —  (equation (25) with t,(b) = b)). Note that there are no 
^■Jr 

cross terms oscillating in the time direction. The pseudo-Wigner distribution in figure 3(c) uses 

a short-duration Harming window to smooth out cross terms in the frequency direction only. The 

pseudo-Wigner distribution is defined in equation (9) with g(t) = 5(t) and H(f), which is a 

short-duration window for stronger smoothing in the frequency direction.18 As the click train 

may be considered as the sum of the impulses, the Wigner distribution cross terms are centered 

at a constant group delay curve, and are found along the frequency direction. Thus, the pseudo- 

Wigner distribution in figure 3(c) has successfully reduced the cross terms with only some loss 

of time-frequency resolution, and it clearly shows the various clicks. There are about five click 
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trains present with about two to five clicks per click train; the click trains are about 0.5 ms apart, 

and the clicks in each click train are about 35 us apart. On the other hand, the spectrogram does 

not allow separable time and frequency smoothing, and would, as a result, have more loss of 

time and frequency resolution. 

In studying the nature of the click bursts present in the data files, table 6 compares the 

duration of the click burst, the start time of the click burst, the number of clicks per burst, and the 

instantaneous click rate (number of clicks per second in intervals of one-tenth of the duration of 

the click burst) for various click bursts. The click bursts usually lasted from 0.04 - 0.60 s, and 

the number of clicks per burst ranged from 37-892 clicks. The instantaneous click rate showed 

that in some cases, the number of clicks per second increased and then decreased, whereas in 

other cases, the number of clicks per second kept increasing or decreasing. Without any 

additional information on the mammal's behavior at the time of recording, it is difficult to 

determine the behavior of the instantaneous click rate. Another difficulty in obtaining the 

instantaneous click rate was that, if the duration of the click burst exceeded 0.6 s and was 

combined with closely spaced clicks, it was not easy to determine how many clicks were present. 

As analysis tools, the time signal was used as well as the spectrogram, but the spectrogram 

provided a faster implementation for longer sections of click bursts. Note, however, that as the 

duration of the click burst increased, it was difficult to differentiate the closely spaced, 

broadband clicks. 
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Figure 2.  The Single Sonar Click of the White-Sided Dolphin from Data File 75001012.kay 
from Figure 1: (a) Signal in the Time Domain, (b) Wigner Distribution, and 

(c) Spectrogram of the Click 
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Table 6. Comparison of Various Statistics of Marine Mammal Click Bursts 

Mammal File Number 

(•kay) 

Duration 

(s) 

Start Time 

(s) 

Clicks/Burst Instantaneous Click Rate 

tClicks/s->Time(s) 

Whitc-Sidcd Dolphin 75001001 0.403 0.881 268 

Whitc-Sidcd Dolphin 7500101m 0.520 0.298 373 /A/ 
Whitc-Sidcd Dolphin 7500100p 0.050 1.006 108 

101   1.02  ID  IM   106 

Whitc-Sidcd Dolphin 7500100q 0.072 0.452 172 

0^0    0 4a     oü     oil? 

Whitc-Sidcd Dolphin 7500lOOr 0.291 1.321 111 
v^-- 

Whitc-Sidcd Dolphin 75001012 0.360 0.521 159 

OB        0/        OH 

Whitc-Sidcd Dolphin 75001019 0.232 0.481 229 
1000 

son — 

Whitc-Sidcd Dolphin 7500101a 0.377 0.347 294 

./"' 

Whitc-Sidcd Dolphin 75001011 0.048 

0.044 

0.055 

0.188 

0.303 

82 

106 

109 

010   OP    031  02?  013 

031    03?   033   034 

3C00 

Kl(10 ; 

1000 
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Table 6. Comparison of Various Statistics of Marine Mammal Click Bursts (Cont'd) 

Mammal File Number 

(•kay) 

Duration 

(s) 

Start Time 

(s) 

Clicks/Burst Instantaneous Click Rate 

tClicks/s ->Time(s) 

Wliitc-Sidcd Dolphin 7500101m 0.145 0.293 37 
COO 

2CC ^ 
a         0 3b        0 •> 

White-Sided Dolphin 7500101n 0.280 1.373 272 
100(1 

SCO \A 
14            15            16 

White-Sided Dolphin 7500101q 0.533 1.606 252 
603 

COD 

400 f\A. 
17   18   10     P     21 

White-Sided Dolphin 7500101r 0.440 0.544 565 ICO 

i?cr 

'> 
nr,    or    OB    on 

Long-Finned Pilot Whale 7702C001 0.471 0.923 892 JDK 

?50 

?D0 

IM A. 
1       1 1     12     13 

Spotted Dolphin 83006023 0.229 0.752 118 BOO 

600 

VAA. 
0.6    0.86    D9    0 95 

Spotted Dolphin 83006025 0.447 0.6G5 111 
SOC 

400 

2D0 

KM 

AA-V\ 
07     0B     09      1       1. 

Spotted Dolphin 8300602b 0.376 0.925 142 G00 

DOC Y\ 
1    i.i   i?   1 3 

Spotted Dolphin 8300602m 0.602 1.116 98 

V^' 
Spotted Dolphin 8300G02x 0.232 1.284 505 »DO 

SSO 

100 

.Ay 
13                 14                 1 
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7. TIME-FREQUENCY ANALYSIS OF WHISTLES 

Whistles are continuous, frequency-modulated, narrowband, nonstationary sounds whose 

time-frequency characteristics vary in duration, bandwidth, and shape depending on the marine 

mammal; i.e., their frequency content varies considerably and in different ways during the time 
1 "\ 

duration of the sound. For example, it is reported   that the Atlantic pilot whale has seven 

categories of whistle time-frequency structures, as follows: 

1. Level frequency (essentially no change in frequency throughout the entire duration of 

the whistle). 

2. Falling frequency (decrease in frequency throughout the duration of the whistle). 

3. Rising frequency (increase in frequency throughout the duration of the whistle). 

4. Up-down frequency (frequency rise followed by frequency fall). 

5. Down-up frequency (frequency fall followed by frequency rise). 

6. Multiple humps frequency (frequency has at least two inflections). 

7. Waver frequency (frequency has at least two inflections symmetrical about some 

mean). 

Thus, for different mammals, the characteristic whistle structure may show a rise or fall in 

frequency or no change in frequency, or the structure may fall hyperbolically (as 1/frequency), or 

either change sinusoidally or as a function of some power. In many cases, the time-frequency 

structure may consist of a combination of various frequency modulation changes. Thus, the 

whistle's group delay characteristic changes from mammal to mammal. Due to the large 

variations in whistle structures, Cohen's class QTFRs may not yield the true time-frequency 

structure of all possible whistles, as these QTFRs are well matched only to constant or linear 

changes in group delay. Some whistles may be better matched to the generalized time-shift 

covariant QTFRs of section 4 that take into account the whistle's characteristic group delay 

structure (for example, a hyperbolic QTFR may be well matched to a whistle with a 1/frequency 

modulation characteristic). In the next section, various QTFRs are used to analyze the different 

types of whistles. 
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7.1  SPECTROGRAM ANALYSIS OF WHISTLES 

The spectrogram of various whistles was computed to demonstrate the whistle variations 

in time-frequency structure using the built-in MATLAB function specgram.m. The spectrogram 

was used as it is computationally efficient for the large data records. The spotted-dolphin 

whistles in sound file 83006023.kay are shown in figure 4 to have a power and linear time- 

frequency characteristic structure, whereas the whistles of the spotted dolphins in sound file 

9002709d.kay have sinusoidal time-frequency characteristics, as shown in figure 5. The long- 

finned pilot whale whistles often have hyperbolic time-frequency characteristics, as shown by 

the spectrogram of data file 7703500w.kay in figure 6. The spectrogram of the white-sided 

dolphin whistles from data file 75001016.kay, shown in figure 7, shows a linear/power fall in 

frequency. The data files may also contain several different types of whistles, as is the case with 

the striped dolphins from data file 7200700f.kay in figure 8; the frequency seems to be rising and 

falling in various ways during the sound duration. Most of the figures also contain broadband 

clicks and, although the figures show some characteristic time-frequency whistle structures for 

different marine mammals, other structures are also possible by the same mammal. For analysis 

purposes, the data have been preprocessed to remove low frequencies due to recording 

equipment or engine noise and have been decimated to reduce the number of samples. 

In order to quantify the data, table 7 was compiled with various statistics of the marine 

mammal's whistles for comparison purposes. The table includes the type of marine mammal 

producing the whistle, the file from which the data was obtained, and the duration, start time 

(from the beginning of the file), bandwidth, lowest frequency, and initial frequency of the 

whistle, as well as a plot of the whistle's idealized time-frequency structure. The spectrogram 

was used as an analysis tool because of its speed and because it provides sufficient means to 

obtain these types of measurements. The results of the analysis closely agree with previously 

published results,11'13 and the following characterizations can be derived from the data: 
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Demonstrating Linear Fall and Power Time-Frequency Characteristics 
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Demonstrating Various Types of Time-Frequency Characteristics 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles 

Milllltllill File Number 

(.kny) 

Duration Start Time 

(s) 

Bandwidth 

(kHz.) 

Lowest Frequency 

(kHz) 

Initial Frequency 

(kHz) 

Time-Frequency Structure 

ffrequency (kHz)-> time (s) 

Long-Pinned 

Pilot Whale 

7501000f 0.57 

0.83 

0.57 

0.05 

0.5 

1.5 

3.3 

3.0 

1.91 

4.7 

4.4 

4.4 

8.0 

4.4 

6.3 
VV^Vv. 

Long-Pinned 

Pilot Whale 

750 Kit) 1(1 1.3 

1.46 

0.48 

Ü.45 

8.9 

4.7 

9.7 

3.8 

9.7 

4.2 
" r- 

Long-Pinned 

Pilot Whale 

75011005 0.63 

0.7 

0.50 

0.97 

0.12 

0.79 

2.4 

5.7 

5.2 

4.5 

3.9 

6.1 

6.6 

3.9 

6.1 
/A 

I.ong-l'"iiined 

Pilot Whale 

7501100G 1.04 

1.04 

0.74 

0.43 

0.53 

0.98 

1.2 

0.1 

5.4 

4.6 

3.7 

4.6 

4.3 

4.7 

3.7 

9.0 

4.3 

4.7 

3.7 

11.8 

" 

rrp-- 
'     * 

Long-Pinned 

Pilot Whale 

75011007 0.87 

0.52 

0.41 

0.74 

0.04 

0.11 

1.17 

1.5 

2.8 

2.4 

3.4 

5.8 

6.5 

5.1 

5.2 

8.7 

6.5 

5.1 

6.2 

12.1 

« ;;? 
1 ,ong-Finned 

Pilot Whale 

75011001. 0.48 

0.5G 

1.33 

1.C7 

4.0 

3.4 

5.6 

5.1 

7.5 

6.4 

" 4/ 

1 ,ong-l- inned 

Pilot Whale 

75012001 0.52 

0.39 

0.28 

0.97 

0.31 

0.85 

1.33 

1.3 

3.0 

1.6 

1.4 

2.4 

4.4 

5.4 

4.4 

5.9 

6.0 

6.3 

4.9 

8.3 

^y 

Long-Pinned 

Pilot Whale 

7501203q 0.57 

0.3 

0.5 

0.48 

0.09 

0.92 

1.43 

2.2 

2.4 

2.0 

2.6 

1.4 

7.1 

6.4 

6.4 

7.2 

7.1 

7.1 

7.5 

7.2 

■■ ^ rf ' 

l,ong-l;inned 

Pilot Whale 

75ÜI204U 0.C7 1.44 3.7 3.2 3.4 

1 
\\ 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles (Cont'd) 

Msimmsi! File Number 

(.kay) 

Duration 

(s) 

Start Time 

(s) 

Bandwidth 

(kHz) 

Lowest Frequency 

(kHz) 

Initial Frequency 

(kHz) 

Time-Frequency Structure 

tfrequency (kHz)-> time (s) 

Long-Finned 
Pilot Whale 

7703500a. 0.9 

0.34 

0.3G 

0.34 

0.25 

0.21 

2.0 

3.2 

5.4 

3.1 

4.8 

8.9 

3.2 

4.8 

8.9 
■< ^ 

Long-Finned 
Pilot Whale 

7703500b 0.64 

0.39 

0.31 

0.3G 

0.11 

0.85 

1.22 

1.11 

3.3 

1.8 

3.0 

1.7 

1.7 

1.9 

2.4 

4.7 

5.0 

3.7 

5.5 

4.7 
■ 

V._v£ 

Long-Finned 
Pilot Whale 

7703500c 0.57 

0.79 

0.6G 

0.62 

0.61 

0.71 

4.6 

4.4 

2.3 

2.9 

2.3 

4.5 

2.9 

6.7 

6.8 
i 

Kfz 
Long-Finned 
Pilot Whale 

7703500c 0.99 0.02 0.73 1.7 2.4 

-" 

Long-Finned 
Pilot Whale 

7703500g 0.25 

0.45 

0.17 

0.02 

0.2 

0.6 

0.03 

4.5 

1.8 

3.1 

2.4 

4.1 

3.1 

6.9 

5.9 -V 
03    ' 

Long-Finned 
Pilot Whale 

7703500n 0.38 

0.36 

0.56 

0.23 

0.18 

0.18 

0.84 

0.98 

3.8 

5.1 

5.4 

1.7 

4.4 

9.5 

2.0 

4.5 

4.4 

9.5 

7.6 

6.1 
•■ 

Long-Finned 
Pilot Whale 

7703500r 0.5 

0.71 

0.38 

0.23 

0.37 

0.34 

6.2 

1.3 

2.0 

2.1 

3.2 

4.3 

8.2 

4.4 

6.2 W 
"         ' 

Long-Finned 
Pilot Whale 

7703500u 0.6 

0.43 

0.39 

0.2 

0.3 

0.34 

7.3 

2.5 

2.2 

2.1 

4.2 

6.4 

9.3 

6.6 

8.5 

' \v_ 
05       ' 

Long-Finned 
Pilot Whale 

7703500w 0.91 

0.69 

0.29 

0.41 

4.6 

2.8 

2.4 

4.7 

6.9 

7.5 ^= 

Long-Finned 
Pilot Whale 

7703500x 0.55 

1.16 

0.5 

0.65 

0.17 

0.7 

4.2 

3.2 

2.6 

2.2 

4.5 

4.3 

6.4 

7.6 

6.9 ~^ 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles (Cont'd) 

Mammal File Number 

(.kay) 

Duration 

(s) 

Start Time 

(s) 

Bandwidth 

(kHz.) 

Lowest Frequency 

(kHz) 

Initial Frequency 

(kHz) 

Time-Frequency Structure 

•ffrequency (kHz)-* time (s) 

Long-Finned 
Pilot Whale 

77035010 0.75 

0.51 

0.08 

0.18 

0.3 

2.1 

1.8 

3.2 

2.0 

4.6 ^A. 

Long-Firmed 
Pilot Whale 

77035011 0.43 

0.70 

0.51 

0.57 

1.9 

1.8 

1.9 

3.4 

3.8 

5.3 ' ^r- 

I ,ong-Finned 
Pilot Whale 

77035013 0.42 

0.37 

0.57 

0.G4 

2.2 

1.3 

1.8 

3.5 

4.0 

4.5 t= 

Long-Finned 
Pilot Whale 

77035015 0.81 

0.72 

0.63 

0.72 

2.5 

2.0 

1.8 

3.7 

4.1 

5.7 ^ 

Long-Finned 
Pilot Whale 

7703501a 1.48 

0.G5 

0.21 

1.53 

l.G 

1.1 

2.G 

3.7 

2.6 

4.7 r^-SX^T- 

Long-Finned 
Pilot Whale 

7703501c 1.18 

0.3C 

0.02 

0.32 

9.7 

7.2 

1.8 

4.0 

4.4 

5.5 ~y 
»l     1 

Long-Finned 
Pilot Whale 

7703501g 1.55 

0.7G 

0.03 

0.08 

0.21 

0.89 

4.8 

1.4 

3.4 

3.2 

2.4 

5.3 

3.2 

3.8 

8.7 £= 
1                       V 

Long-Finned 
Pilot Whale 

7703501w 0.58 

0.51 

0.41 

0.4 

0.43 

0.76 

1.5 

2.3 

1.3 

4.2 

1.4 

2.6 

5.0 

3.4 

3.9 
'V_- 

Long-Finned 
Pilot Whale 

77035024 1.24 

0.24 

0.51 

0.1 G 

0.0G 

0.39 

1.4 

1.1 

0.8 

2.4 

3.9 

G.7 

2.3 

3.9 

7.5 ^s—^- 

Long-Finned 
Pilot Whale 

7703502c 1.1 0.32 3.5 1.7 1.7 

s-^ 
I ,ong-Finned 
Pilot Whale 

7703502c! 1.04 

0.68 

0.29 

0.74 

1.5 

2.7 

2.3 

2.1 

4.0 

2.1 -~f^r 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles (Cont'd) 

Mammal File Number 

(.kay) 

Duration 

(s) 

Start Time 

(s) 

Bandwidth 

(kHz) 

Lowest Frequency 

(kHz) 

Initial Frequency 

(kHz) 

Time-Frequency Structure 

tfrequency (kHz)-» tinie(s) 

White-Sided 
Dolphin 

7500100z 1.0 

0.8 

0.08 

1.9 

6.1 

9.0 

8.1 

7.0 

14.1 

16.0 ;: A_   \ 
'        '       ° 

While-Sided 
Dolphin 

75001013 0.26 0.29 3.5 7.6 10.6 ,! 

"\ 
01         1         15         I 

White-Sided 
Dolphin 

75001014 0.50 0.49 5.0 9.3 14.3 

, X 

"   '    ,a 

White-Sided 
Dolphin 

75001015 1.11 1.09 8.6 8.9 17.5 

s 

^x 

White-Sided 
Dolphin 

75001016 0.7 

0.9 

1.09 

1.8 

10.8 

7.8 

5.7 

8.0 

16.5 

15.8 :; \s 
White-Sided 
Dolphin 

75001017 0.76 0.63 5.4 8.9 14.3 
I 

15   '   ,3   * 
White-Sided 
Dolphin 

75001019 0.72 0.63 6.0 8.8 14.6 • v^ 

"   '   '■* 

White-Sided 
Dolphin 

7500101a 0.40 0.34 4.7 6.1 10.9 

° \ 
t         P        a 

White-Sided 
Dolphin 

7500101b 0.26 

0.32 

0.52 

0.04 

0.86 

1.2 

7.5 

4.3 

3.0 

4.8 

7.4 

19.4 

11.8 

11.4 

20.5 \    ^ 
"     '      "     ' 

White-Sided 
Dolphin 

7500101d 0.81 0.24 7.2 8.9 16.1 
V 

«3          1          IS         7 

White-Sided 
Dolphin 

750010U 0.53 0.06 7.6 12.7 19.9 
\ 

"         '         1i 

White-Sided 
Dolphin 

7500101h 0.35 

0.41 

0.02 

1.39 

2.4 

6.3 

8.0 

7.3 

10.6 

13.6 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles (Cont'd) 

Mamnuil File Number 

(•kay) 

Duration 

(s) 

Stiirt Tune 

(s) 

Bsnuhvidth 

(kHz.) 

Lowest Frequency 

(kHz) 

Initiiil Frequency 

(kHz) 

Time-Frequency Structure 

tfrequencv(kHzH time (s) 

While-Sided 
Dolphin 

7500101j 0.59 0.70 2.9 9.G 12.5 

■ ^ 

While-Sided 
Dolphin 

7500101n 0.6G 1.02 2.G 7.4 10.1 

~\y 

05   '   "   '  ' 
While-Sided 
Dolphin 

7500101q 0.G3 1.27 6.7 14.4 17.8 

'; 
^ 

1              1             3 

While-Sided 
Dolphin 

7500101r 0.71 0.19 5.4 8.9 12.2 

i \, 
'               '              3 

White-Sided 
Dolphin 

75001027 0.59 0.50 G.G 8.8 15.7 JO 

\ 
"       '         la       ' 

While-Sided 
Dolphin 

75001028 1.0 0.G2 10.1 12.2 12.2 3 
'1 0*         1          IS 

White-Sided 
Dolphin 

7500102a 0.G0 0.30 5.9 8.5 14.3 

V 
"    '    1S 

White-Sided 
Dolphin 

7500102b 0.81 0.12 7.G 7.8 15.4 

: \ 
1      -1 

White-Sided 
Dolphin 

7500102f 0.27 0.99 7.G 5.1 12.7 
13 

\ 
"    '     " 

While-Sided 
Dolphin 

7500102g 0.91 

0.50 

0.22 

0.33 

1.23 

1.73 

10.5 

10.8 

5.4 

6.5 

10.4 

15.5 

9.4 

21.3 

21.0 i Av 
DJ     1      li     1     Jl 

White-Sided 
Dolphin 

7500102t 1.40 0.04 15.3 8.4 22.7 
, 
^_ 

°*            '            '* 

While-Sided 
Dolphin 

7500102m 0.47 

0.3G 

0.38 

0.12 

0.71 

1.28 

11.2 

4.1 

10.7 

6.5 

16.0 

7.1 

16.2 

18.7 

17.7 Y^ 
0=         1         11        V 

White-Sided 
Dolphin 

7500102o 0.50 0.14 12.2 G.4 16.8 
" 
A 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles (Cont'd) 

Mammal Filo Number 

(.kay) 

Duration 

(s) 

Start Time 

(s) 

Bandwidth 

(kHz) 

Lowest Frequency 

(kHz) 

Initial Frequency 

(kHz.) 

Time-Frequency Structure 

■(frequency (kHz)-)- time (s) 

White-Sided 
Dolphin 

75()0102r 0.95 0.33 7.5 8.0 13.0 • ^/x 
"    '    '-' 

White-Sided 
Dolphin 

7500102s 0.85 

0.44 

1.25 

0.13 

1.01 

1.71 

10.5 

10.8 

14.2 

9.2 

7.0 

7.7 

14.1 

15.5 

19.9 

> 
^\ 

'    '   3 

White-Sided 
Dolphin 

7500102v 0.93 0.25 8.9 10.1 13.9 
- ^v_ 

el    '    ,s 

White-Sided 
Dolphin 

7500102w 0.14 

0.23 

0.12 

0.91 

8.5 

9.2 

7.1 

6.0 

15.5 

15.2 ;; \ V 
OS         .          11         J 

White-Sided 
Dolphin 

7500102x 0.77 

0.90 

0.38 

0.39 

13.3 

7.0 

17.0 

7.6 

27.1 

13.3 » :\ 

■i i i» j 

White-Sided 
Dolphin 

7500103d 0.39 

0.23 

0.55 

0.38 

1.08 

1.94 

4.6 

3.2 

10.0 

8.1 

11.4 

7.7 

12.5 

14.6 

17.7 •• ^ A 
«»   i   I»  ?  a 

White-Sided 
Dolphin 

7500103c 0.4G 

0.48 

0.35 

1.78 

10.7 

5.8 

7.1 

7.6 

17.1 

12.0 

, 

\    A 
"  '   '*   * " 

White-Sided 
Dolphin 

7500103g 0.35 

0.43 

0.70 

0.84 

1.24 

1.77 

5.0 

9.8 

3.9 

10.1 

7.3 

10.5 

15.0 

14.4 

14.3 > vV 
05    '    "   '   " 

White-Sided 
Dolphin 

75001031 0.45 

0.4G 

0.32 

0.73 

2.3 

3.3 

12.3 

7.4 

14.7 

10.7 » 
~\ 

"     '      ,s     J 

White-Sided 
Dolphin 

7500103p 0.21 

0.80 

0.05 

0.2G 

3.5 

5.6 

17.7 

8.2 

21.0 

13.7 " 
v 
^ 

White-Sided 
Dolphin 

7500103w 0.47 

0.24 

0.27 

0.14 

1.45 

1.70 

2.6 

2.9 

4.4 

8.0 

12.4 

5.8 

10.7 

15.3 

10.3 
,. V 

"   '   li  * 

White- Sided 
Dolphin 

75001041 0.00 

0.80 

0.G0 

0.13 

1.14 

1.78 

4.6 

6.2 

4.9 

9.1 

7.1 

8.6 

14.0 

13.4 

13.4 ^ V* 
>5     1      15     1     IS 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles (Cont'd) 

M<imm:il 

Spoiled 
Dolphin 

File Number 

]My)  
83()l)601q 

Duration 

(s) 

Start Time 

(s) 

Bandwidth 

(kHz) 

Lowest Frequency 

(kHz) 

Initial Frequency 

(kHz) 

Time-Frequency Structure 

■(■frequency (kHz) -> time (s) 

1.03 

1.14 

0.43 

1.0 

14.5 

5.2 

7.3 

6.4 

7.3 

8.9 
' 
As 

\          i          t 

Spotled 
Dolphin 

830U6023 1.38 0.49 8.0 7.5 9.2 
\ ^\ 

01     1      IS     1     } 

Spoiled 
Dolphin 

83006025 0.89 0.28 6.3 9.1 9.1 

' A 
OJ     1      M,     1 

Spotted 
Dolphin 

8301)6027 0.96 0.19 7.4 7.9 7.9 1 

A\ 
Oi      1      1.1     1 

Spoiled 
Dolphin 

8300602b 0.96 

1.39 

0.7 

0.49 

1.05 

1.35 

7.4 

17.3 

6.9 

8.2 

6.5 

8.6 

8.2 

8.9 

11.1 AV 

Spoiled 
Dolphin 

8300602i 1.37 

2.17 

0.18 

0.61 

11.2 

19.2 

10.5 

4.8 

15.7 

4.8 ^AVV 
01     1      .1     J     31 

Spotted 
Dolphin 

8300602m 2.46 

1.49 

0.72 

0.41 

0.97 

2.23 

22.5 

9.6 

9.1 

8.0 

5.6 

6.9 

8.0 

8.1 

11.0 IB A< 
1               t              0 

Spotled 
Dolpliin 

8300002t 1.72 0.15 8.8 6.9 6.9 
< r^ 

" * y* * 

Spoiled 
Dolphin 

8300C02x 1.05 

1.12 

1.03 

0.38 

0.75 

1.45 

9.4 

7.8 

14.0 

7.7 

7.6 

10.1 

7.9 

7.6 

12.4 ,, />cA 
i    ?    s 

Spotlcd 
Dolphin 

83006031 1.24 0.75 8.1 7.5 9.3 

A. 
DJ      1       11      ? 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles (Cont'd) 

Miimmsil File Number 

(.kay) 

Duration 

<s) 

Start Time 

(s) 

Bandwidth 

(kHz) 

Lowest Frequency 

(kHz.) 

Initial Frequency 

(kHz.) 

Time-Frequency Structure 

^frequency (kHz) -> time (s) 

Spotted 
Dolphin 

83006032 1.09 0.06 6.4 8.6 8.6 " 
rv 

'      '      3 

Spotted 
Dolphin 

8300G033 1.57 0.37 7.1 8.1 8.6 

^, 
n   ,   is   i   is 

Spoiled 
Dolphin 

8300603c 1.04 1.57 11.7 5.1 5.1 40 

^ 
i        i       a 

Spotled 
Dolphin 

8300603s 0.82 0.66 9.0 7.2 7.2 

A 
«i i I* » »J 

Spotted 
Dolphin 

8300603U 1.21 0.53 9.5 7.1 7.1 

;: /V 
OS     1      IS     1     } 

Spotted 
Dolphin 

83006047 1.43 0.36 10.6 5.3 5.3 

^ 

Spotled 
Dolphin 

83035024 1.17 0.75 12.8 7.3 7.3 
~ r\ 

03     1     13     2     I 

Spotted 
Dolphin 

90027091 0.69 

0.36 

0.23 

0.72 

13.4 

9.2 

10.7 

8.7 

10.7 

8.5 ■ 
// 

«S     1     14    I    ».* 

Spotted 
Dolphin 

90027092 0.52 0.07 5.9 11.3 11.2 * A 

OS         1          IS 

Spotted 
Dolphin 

9002709d 0.84 0.12 12.2 9.6 9.6 

" y^y 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles (Cont'd) 

Mammal 

Striped 
Dolphin 

File Number 

(.kay) 

72007003 

Duration 

(s) 

0.94 

1.15 

0.84 

1.32 

Start Time 

(s) 

Bandwidth 

(kHz.) 

Lowest Frequency 

(kHz) 

Initial Frequency 

(kHz.) 

Time-Frequency Structure 

-[■frequency (kHz)-> time (s) 

0.45 

0.85 

1.28 

1.88 

7.5 

3.4 

4.2 

8.2 

7.6 

7.3 

4.3 

7.6 

7.6 

10.7 

4.3 

9.9 
XfA- 

.           1           3 

Striped 
Dolphin 

72007004 0.99 

0.52 

0.43 

0.04 

0.89 

1.28 

9.7 

1.6 

3.7 

6.3 

7.6 

10.6 

6.3 

7.6 

10.6 
; r^J^T 

Striped 
Dolphin 

72007005 0.43 

0.66 

0.43 

0.7 

0.11 

0.69 

1.69 

1.83 

4.9 

5.6 

4.8 

4.8 

7.3 

9.3 

7.4 

10.6 

7.3 

10.6 

7.6 

15.4 

:: /^ 7^ 
•      IS     1      H     1     1 

Striped 
Dolphin 

72007006 1.48 

1.04 

0.77 

0.03 

0.78 

1.79 

9.0 

3.1 

7.2 

8.5 

6.3 

9.7 

13.6 

6.3 

12.7 
'■ ATW 

Hi    1     11    1    is 

Striped 
Dolphin 

72007007 0.49 

0.36 

0.53 

0.73 

0.02 

0.90 

0.87 

1.01 

5.1 

8.2 

4.0 

5.4 

8.9 

9.9 

8.0 

6.8 

8.9 

9.9 

8.5 

6.8 

l^ ^ 
01         1         15 

Striped 
Dolphin 

7200700a 1.65 

0.72 

0.69 

0.03 

1.75 

2.55 

9.4 

6.0 

5.4 

9.8 

4.7 

8.6 

9.8 

8.2 

9.6 
/V^ 

.          >         J 

Striped 
Dolphin 

7200700b 1.09 

1.22 

0.03 

0.08 

4.6 

8.5 

5.9 

5.2 

7.3 

5.2 
" 
^ 

11    '    "   '    2i 

Striped 
Dolphin 

7200700c 1.10 

0.73 

0.02 

0.04 

7.9 

4.2 

4.9 

7.3 

9.4 

8.6 ^ 
ai     i     u 

Striped 
1 )olphin 

7200700c 0.42 

0.59 

0.11 

1.03 

9.0 

11.0 

7.9 

7.5 

16.3 

18.5 W   VA 
01         1        1S 

Striped 
Dolphin 

7200700f 0.71 

0.73 

1.10 

0.07 

0.74 

0.89 

4.3 

9.0 

8.2 

9.4 

6.8 

5.5 

9.7 

9.3 

13.3 
» '^TV 

Di      1       1.1      1 
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Table 7. Comparison of Various Statistics of Marine Mammal Whistles (Cont'd) 

Mammal File Number 

(kay) 

Duration 

(s) 

Start Time 

(s) 

Bandwidth 

(kHz) 

Lowest Frequency 

(kHz) 

Initial Frequency 

(kHz) 

Time-Frequency Structure 

f frequency (kHz) -+ time (s) 

Stnpcd 
Dolphin 

7200700g 0.76 

0.93 

0.93 

0.88 

0.10 

0.12 

0.64 

1.66 

10.1 

4.4 

9.3 

6.5 

10.4 

7.7 

5.8 

7.3 

12.0 

7.7 

5.8 

11.6 

lr !a/V 
"   '   ,s  *  ' 

Striped 
Dolphin 

7200700h 0.81 

0.62 

0.49 

0.05 

0.81 

1.30 

3.5 

2.7 

4.9 

5.0 

6.3 

10.1 

8.5 

6.3 

10.7 
J 

«S      1      .5     1 

Striped 
Dolphin 

7200700k 0.99 

0.59 

0.63 

0.56 

1.59 

1.93 

10.3 

7.1 

2.7 

8.9 

9.0 

9.4 

11.4 

14.8 

12.2 
i 

■ 

,rVo 
9»   1    »1   i    IS 

Striped 
Dolphin 

7200700m 1.04 

0.48 

0.63 

0.91 

1.18 

1.56 

5.4 

7.5 

7.7 

5.7 

8.4 

8.3 

11.1 

8.4 

8.3 ■; viXS 
,s  '   "  ' 

Stnpcd 
Dolphin 

7200700O 1.11 

0.70 

0.35 

0.69 

2.22 

2.66 

7.3 

1.2 

3.5 

5.7 

6.8 

10.3 

12.8 

7.3 

10.3 

•• 
y 

1               >               3 

Striped 
Dolphin 

7200700q 0.94 

0.38 

0.67 

0.03 

0.80 

1.15 

9.4 

8.1 

10.9 

11.2 

7.1 

8.8 

13.2 

13.7 

8.8 
Jt\h 

as     i     «     2 

Striped 
Dolphin 

7200700t 0.93 

0.66 

0.15 

1.55 

8.7 

4.2 

7.0 

9.3 

15.1 

9.3 
\ \fV   ^ 

Striped 
Dolphin 

7200700v 0.90 

0.41 

0.55 

0.86 

0.03 

0.64 

1.32 

1.57 

5.4 

5.4 

6.5 

1.7 

8.1 

8.1 

5.2 

7.3 

12.7 

8.1 

5.2 

8.9 

' W /- 
os    I     «s   7    it. 

Striped 
Dolphin 

72007027 0.53 

0.84 

0.93 

0.56 

0.60 

0.55 

0.42 

1.33 

7.3 

5.6 

6.0 

3.0 

9.2 

8.5 

6.2 

8.0 

16.7 

9.9 

6.8 

8.0 
I }ß^ 

DS       1        15       * 

Striped 
Dolphin 

7200702b 1.20 

0.62 

0.50 

0.02 

0.30 

0.80 

5.7 

9.1 

5.9 

8.5 

7.5 

6.1 

8.4 

7.5 

12.0 
M#A{ 

" ' " * 
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• Long-finned pilot whales are characterized by low-frequency-range whistles. The 

mean initial frequency is 5.7 kHz, the mean minimum frequency is 4.1 kHz, and the 

mean bandwidth is 3.1 kHz. Rhythmically repeated individual whistles were often 

noted. Many of the whistles have hyperbolic time-frequency characteristics; 

however, other time-frequency structures were also observed. 

• White-sided dolphins are characterized by high-frequency-range whistles. The mean 

initial frequency is 15 kHz, the mean minimum frequency is 9.1 kHz, and the mean 

bandwidth is 6.9 kHz. The whistles often seem to repeat rhythmically. Similar to the 

whistle of the long-finned pilot whale, this whistle does not have the stereotypical 

sinusoidal frequency modulation. The whistles appear to fall in frequency in a 

somewhat linear fashion. 

• Spotted-dolphin whistles are characterized by high-frequency-range whistles. The 

mean initial frequency is 8.7 kHz, the mean minimum frequency is 7.8 kHz, and the 

mean bandwidth is 10.4 kHz. The whistles appear to have power time-frequency 

characteristics. 

• Striped dolphins are also characterized by high-frequency-range whistles. The mean 

initial frequency is 9.9 kHz, the mean minimum frequency is 7.7 kHz, and the mean 

bandwidth is 6.2 kHz. The whistles appear to have the stereotypical sinusoidal 

frequency modulation and have both rising and falling time-frequency components. 

Thus, from the data analyzed, the long-finned pilot whale whistles start at a lower frequency and 

have narrower bandwidths than the white-sided, spotted, and striped dolphins. Although the 

time-frequency structure of the whistle varied greatly, it is noted that the observed long-finned 

pilot whale whistles have a hyperbolic or exponential structure; however, other studies show that 

the long-finned pilot whales do not have a characteristically exclusive whistle type. 
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The last column in table 7 provides a convenient and intuitive tool for interpreting the 

time-frequency characteristics of the whistles. It also provides some preliminary information on 

the group delay structure of the whistles so that the generalized time shift of the generalized 

warped QTFR can be chosen to match the signal's group delay for better analysis results. The 

time-frequency curves in the last column of table 7 were obtained by selecting time-frequency 

points from the spectrogram analysis of the whistles, and then by using cubic spline interpolation 

to fit the selected points. 

Additional deductions were also made from table 7 and are summarized in table 8 for 

long-finned pilot whales, in table 9 for white-sided dolphins, in table 10 for spotted dolphins, and 

in table 11 for striped dolphins. The tables show the mean value and the standard deviation of 

the initial frequency, the minimum frequency, the bandwidth, and the duration of the whistles of 

each marine mammal. Below each table, histograms of the various statistics are also given to 

show the distribution of each of the whistle characteristics. Based on the computed mean and 

standard deviation, the corresponding Gaussian distribution was also computed and 

superimposed on the histogram. Although the distribution of the whistle characteristic is not 

clearly Gaussian, the superposition helps to show the mean value of the whistle characteristic. 

For example, the initial frequency of the white-sided dolphin in table 9 has a mean value of 

15.04 kHz and a standard deviation of 3.44 kHz. The corresponding histogram for the initial 

frequency in table 9 shows that the distribution of the initial frequencies is close to a Gaussian 

distribution with the given mean and standard deviation. 
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Table 8.  Whistle Statistics for Long-Finned Pilot Whales 
(Statistical sample size is 80 data sets.) 

Statistic 
Initial 

Frequency 
(kHz) 

Minimum 
Frequency 

(kHz) 
Bandwidth 

(kHz) 
Duration 

(sec) 
Mean 5.66 4.13 3.11 0.64 

Standard 
Deviation 

2.16 1.96 1.86 0.30 
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Table 9.  Whistle Statistics for White-Sided Dolphins 
(Statistical sample size is 61 data sets.) 

Statistic 
Initial 

Frequency 
(kHz) 

Minimum 
Frequency 

(kHz) 
Bandwidth 

(kHz) 
Duration 

(sec) 
Mean 15.04 9.06 6.95 0.59 

Standard 
Deviation 

3.44 3.09 3.18 0.27 

Initial frequency 

0) 
Q. 

0.25 

0.2 
a> 
D) 

i     0.15 \ 
a o 

0.1 • 
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Table 10.  Whistle Statistics for Spotted Dolphins 
(Statistical sample size is 29 data sets.) 

Statistic 
Initial 

Frequency 
(kHz) 

Minimum 
Frequency 

(kHz) 
Bandwidth 

(kHz) 
Duration 

(sec) 
Mean 8.67 7.80 10.36 1.16 

Standard 
Deviation 

2.24 1.63 4.10 0.45 
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re 
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Table 11. Whistle Statistics for Striped Dolphins 
(Statistical sample size is 62 data sets.) 

Statistic 
Initial 

Frequency 
(kHz) 

Minimum 
Frequency 

(kHz) 
Bandwidth 

(kHz) 
Duration 

(sec) 
Mean 9.98 7.72 6.21 0.77 

Standard 
Deviation 

3.04 1.66 2.46 0.28 
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For some of the data files, the spectrogram analysis of whistles yielded various higher 

harmonics as well as the first harmonic (belonging to the actual whistle). This phenomenon 

usually occurred in files consisting of spotted dolphin whistles, together with clicks and pulsed 

clicks. In particular, the whistle harmonics appear to occur in the region of the pulsed clicks. 

For example, figure 9 shows the spectrogram of data file 8300603c.kay; although the data 

information that came with the file states that one whistle is present, other harmonics are clearly 

present. It is important to investigate whether the harmonics effect was due to the analysis tool 

or whether it was either a biological effect or a recording artifact. Watkins16 states that, 

depending on the spectrogram window, the interpretation of spectrogram analysis composed of 

pulsed trains (such as pulsed clicks) could be confusing. This is because as the pulse rate 

increases (that is, as the number of clicks per second increases), harmonics result at multiple 

increments of the pulse rate if the window used is not shorter than the time duration between 

clicks. The harmonics at the various frequencies now appear more like whistles, since their 

frequencies change as the pulse rate changes. In our case, however, the spectrogram window 

length and the pulse rate were such that a harmonic effect should not have been observed in the 

data. In addition, figure 9 shows that the pulsed clicks are still present. This indicates that the 

harmonics are actually part of the whistles, not the clicks. Further analysis using the time signal 

and the Wigner distribution (that have no windowing effect) show that the harmonics are still 

present; the higher harmonics, therefore, may be part of the sounds that the mammals produce, 

and the higher harmonic (higher frequencies) indicates a decrease in harmonic energy. Another 

possibility is that the harmonics are the result of the recording. In either case, it is important to 

know that the harmonics are present at the higher frequencies, even if their energy decreases. 
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Figure 9. Spectrogram of a Spotted-Dolphin Whistle from Data file 8300603c.kay 
(Note the four whistle harmonics between 1.5 s and 2.7 s.) 
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7.2 OTHER COHEN'S CLASS QTFRs ANALYSIS OF WHISTLES 

7.2.1 Wigner Distribution 

The whistles extend over a large number of samples in the data, as shown by the fact that 

the data sampling rate is 166.66 kHz, and the mean values of the duration of the various whistles, 

as shown in tables 8 through 11, range from 0.59 s to 1.16 s. Thus, most whistles extend over a 

sample duration of 98,000 to 193,000 data samples. As a result, the QTFR implementation 

algorithms must be able to handle large data files. The spectrogram is computed efficiently 

using a built-in MATLAB function; however, the current implementation of the Wigner 

distribution using MATLAB can only be used to analyze small blocks of data (block lengths of 

1024 samples). Since the sampling rate of the data (166.666 kHz) is at least four times the 

bandwidth of the analog data, and not much information is present above 20 kHz other than the 

broadband clicks, decimation was used to decrease the number of data samples as it allows 

Wigner distributions of larger sections of data in time to be computed. An algorithm was also 

devised to compute the Wigner distribution of small records, and then to piece the resulting 

Wigner distributions into one large time-frequency representation. This increases the resulting 

block section that can be analyzed to 12,800 samples. Note, however, that the resulting 

representation is not equivalent to the true Wigner distribution of the entire data section, as the 

representation does not include the cross terms between any two data blocks. The MATLAB 

function for this representation is given in section A.5 in the appendix. This function also 

demonstrates the use of decimation to reduce the data samples. 

7.2.2 Smoothed Pseudo- Wigner Distribution 

Most of the MATLAB algorithms presently available to compute various QTFRs, as 

shown in section A.4 in the appendix, can only process short signals in an off-line fashion. 

However, the mammal sounds from the SOUND database are long signals with a sampling rate 

of 166,666 samples per second. For example, a dolphin whistle of only 2 s is considered a long 

signal, as it consists of 333,332 samples. Thus, to analyze long segments of data, new methods 

of computing QTFRs are needed for real-time, on-line operations. 
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7.2.2.1 Direct Method and Short-Time Technique. Two methods for computing the smoothed 

pseudo-Wigner distribution of long data sets are discussed below. 

1. Direct Method. The smoothed pseudo-Wigner distribution is a smoothed version of 

the Wigner distribution that can be used to remove cross terms when multicomponent or 

complicated monocomponent signals are analyzed. As defined in equation (9), the SPWD uses a 

time-smoothing window g(i) and a frequency-smoothing window H(f) that independently control 

the smoothing in the time and frequency directions. The current MATLAB program computes 

the SPWD indirectly by first multiplying the signal's narrowband ambiguity function AFX(r, v) 

with the function (J(V)/Z(T) then the two-dimensional Fourier transform of the product is taken. 

That is, 

SPWDx(t,f)=  r   [ G(v)h{r)AFx(T,v)eMtv-fi)dxdv, (35) 
J-00    J-co 

where the ambiguity function is the two-dimensional Fourier transform of the Wigner 

distribution in equation (5), AFJT.V) =  f I" WDx(t,f)e-jl*{tv-fi) dtdf; G(v) is the Fourier 
J-00   J-00 

transform of g(x) and h(x) and is the inverse Fourier transform of H (/) in equation (9). This 

indirect method requires the whole data segment (off-line) in order to compute the ambiguity 

function, and can only process short signals as the result is saved as an N x N matrix, where N is 

the number of signal samples. In order to enable an on-line computation of the SPWD, a 

program was written that computes the SPWD using a more direct method. In particular, the 

local autocorrelation function x t + - 
V     2y 

(      A t  
I    V 

of the signal x(t) is first computed and then 

convolved with the time-smoothing window g(x) of length Ng. Since the length of the window is 

considerably smaller than the length of the data, i.e., AL «TV, only a small section of the local 

autocorrelation function needs to be computed. In addition, the local autocorrelation function 

can be updated so that the previous value can be used to compute the next value. The result of 

the convolution then gets multiplied with the squared magnitude of the frequency-smoothing 

window h(t) of even length Nf, and the Fourier transform of the product is obtained. 
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Thus, although the SPWD is a smoothed version of the Wigner distribution as shown in equation 

(9), it can also be computed as 

up™,«./) = £ (^■(-llix(i+iy{i-l)go-i)ä;) e-Wch, (36) 

where h(i) is the inverse Fourier transform of H(f) in equation (9). At the end of the 

computation, the SPWD is stored in an Nh x TV matrix. As a result, since not all the data is used 

at once to produce each time-slice of the SPWD, the computation is performed on-line and is not 

computationally intensive. In addition, it allows for larger sections of the data to be analyzed. 

The MATLAB function for this algorithm is given in section A.6 in the appendix. Figures 10 

and 11 show two examples of using the SPWD in equation (36) to analyze large sections of the 

mammal sounds. Figure 10 shows the SPWD of a long-finned pilot whale whistle for a data 

segment of 14,815 samples (corresponding to 0.8 s, where the data was decimated by a factor of 

9 to reduce the total number of samples without aliasing). The hyperbolic time-frequency 

signature of the whistle is clearly shown by the SPWD, without suffering from any inner cross 

terms. Here, a Blackman time-smoothing window of length Ng= 114 and a Hamming frequency- 

smoothing window of length Nf, = 200 were used. The resulting SPWD was a 100 x 14,815 

matrix, since only the positive frequencies were obtained as the analysis signal is real. Similarly, 

figure 11 shows the SPWD of a spotted-dolphin whistle for a data segment of 37,500 samples 

(corresponding to 0.45 s, where the data was decimated by a factor of 2). 

2. Short-Time Technique. Any member of Cohen's class in section 3.1 can be obtained 

as in equation (7). Another way of obtaining Cohen's class QTFRs T^-   (t,f) is by first 

computing the ambiguity function AFx(x,v) of the data and multiplying the ambiguity function 

with a two-dimensional kernel W^^x.v) that completely characterizes the chosen QTFR; then 

the two-dimensional Fourier transform of the product is taken; i.e, 
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Figure 10. Direct SPWD of a Long-Finned Pilot Whale Whistle from Data File 
7703500w.kay (Image shows the whistle's hyperbolic modulation in frequency.) 
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Figure 11. Direct SPWD of a Spotted-Dolphin Whistle from Data File 9002709d.kay 
(Image shows the whistle's power modulation in frequency.) 
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T(
x
C)(t,f)=  f  r^iC)(x,v) AFX (x,v)ej27t(,v-fi)dT dv, (37) 

J—on   J—oo 

where the kernel ^jC)(x,v) is the two-dimensional Fourier transform of the kernel in 

^i^Ht'f) (equation (7)). Note that this method requires all the data to be present in an off-line 

fashion. Also, due to the computational complexity, only short signals can be processed. If the 

signal has length N samples, then the resulting QTFR has dimensions N x N. However, if N is 

large, the method is computationally intensive due to memory constraints. The short-time 

technique,   on the other hand, yields a real-time, on-line operation, as it does not require the 

whole signal to be present in memory. In particular, the technique sections the data by 

windowing it using a rectangular window centered at time t. The short-time ambiguity function 

is then computed by computing the ambiguity function of each windowed section. The two- 

dimensional Fourier transform of the product of the short-time ambiguity function with the 

kernel is obtained, but only the time-slice at time t is kept. Thus, there is no need to compute the 

other time slices, resulting in memory conservation and a reduction in computational time. If the 

signal has length N samples (for N large) and a window of length Nw is used, then the resulting 

QTFR has dimensions Nw/2 x N/Nw.  The dimensions are much smaller than TV x N, which 

would result from an off-line operation; thus, memory is saved, allowing for a more efficient 

computational method. Note that the sections may be overlapped for better resolution in the 

time-frequency plane. 

Although the short-time technique can be used with any Cohen's class QTFR, it is 

demonstrated here for the smoothed pseudo-Wigner distribution (note that the kernel of the 

SPWD in equation (37) is ^(
Sp^D(x,v) = G(\)h(x), as shown in equation (35)). The short-time 

SPWD method resulted in the successful analysis of many long-duration records of mammal 

sounds. For example, in figure 12 the sounds of spotted dolphins, including both clicks and a 

whistle, are analyzed using the short-time SPWD. The whole data segment of N= 436,160 

samples (corresponding to 2.6 s) was successfully analyzed and the resulting SPWD had 

dimensions 128 x 1,703, since a window of length Nw = 256 was used. The short-time SPWD 

clearly shows the various broadband clicks as well as the narrowband whistle (with a 
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Figure 12. Short-Time SPWD of a Spotted Dolphin Whistle from Data File 83035024.kay 
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bandwidth of 12 kHz and a duration of 1.1 s). The MATLAB function used to compute the 

short-time SPWD is given in section A. 7 in the appendix. Note that the direct computation of 

the SPWD as discussed above requires more memory; therefore, it cannot handle data sets as 

large as the short-time SPWD. 

7.3 HYPERBOLIC CLASS QTFRs ANALYSIS OF WHISTLES 

Many whistles have a hyperbolic time-frequency characteristic structure (table 7). This 

hyperbolic structure often occurs at lower frequencies with long-finned pilot whale whistles, 

since the whistles of these marine mammals are emitted at lower frequencies than the other 

marine mammals in the data. These hyperbolic whistles start at high frequencies and diminish in 

frequency in a l//Tashion during the duration of the whistle. Thus, the hyperbolic class QTFRs 

presented in section 4.1.3 would be well matched to analyze the hyperbolic whistles, as the 

whistle's group delay characteristics are matched to the time shift x(f) = 1//"preserved by 

hyperbolic QTFRs.56'57 

The implementation of hyperbolic QTFRs59'60 is similar to the implementation of power 

QTFRs in section 5, as it is based on the warping approach. Any member of the hyperbolic class 

can be obtained by warping the corresponding member of Cohen's class using the warping 

relation in equation (15) with Z,(b) = lnZ>.34 For example, as demonstrated in equation (32), the 

hyperbolic class Altes Q-distribution in equation (26) can be obtained by warping the Cohen's 

class Wigner distribution in equation (5). Specifically, the Altes Q-distribution of a signal is 

obtained by first warping the analysis signal in the frequency domain using an exponential 

frequency axis transformation, then by computing the Wigner distribution of the warped signal, 

and lastly by transforming the time and frequency axes for correct time-frequency localization.27' 
28'34 To demonstrate the advantage of hyperbolic class QTFRs over Cohen's class QTFRs when 

analyzing signals with t=\lf time-frequency characteristics, figure 13 analyzes the sum of two 

hyperbolic impulses defined as X(f) - 
V ) f 

hyperbolic impulse is defined in equation (23) with Z,(b) = \n{b). 

, f > 0 . Note that a 
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Figure 13. Time-Frequency Analysis of the Sum of Two Hyperbolic Impulses: (a) Wigner 
Distribution, (b) Smoothed Pseudo-Wigner Distribution, (c) Altes Q-Distribution, 

and (d) Smoothed Pseudo-Altes Q-Distribution 

Hyperbolic QTFRs are well matched to signals similar to hyperbolic impulses with 

hyperbolic group delay structure. Thus, the Altes Q-distribution (equation (32)) in figure 13(c) 

has good time-frequency concentration along the two hyperbolae t = 31 f and t = llf. However, it 

also results in a cross term along the mean hyperbola35 t = 5/f,as shown in equation (25) with 

l[b) = lnZ>; i.e., the Altes Q-distribution is the sum of two auto terms and one cross term given by 

ADx(t,f) = 
f f 

1 s 
/ 

f 
t - 

f. 

2 
-\ cos 

f 

r 
2n4\n 

V fr 
t  

/. 
(38) 
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The smoothed pseudo-Altes Q-distribution can be obtained by hyperbolically warping the 

smoothed pseudo-Wigner distribution as in equation (32). As is shown in figure 13(d), the 

smoothed pseudo-Altes Q-distribution removes the cross term in equation (38) with only some 

loss of time-frequency resolution. Cohen's class QTFRs, such as the Wigner distribution in 

figure 13(a) and the smoothed pseudo-Wigner distribution in figure 13(b), are not well-matched 

to hyperbolic impulses. The Wigner distribution results in complicated cross terms between the 

two signal components as well as inner interference terms. In comparison to the smoothed 

pseudo-Altes Q-distribution in figure 13(d), the smoothed pseudo-Wigner distribution in figure 

13(b) has a larger loss of time-frequency resolution and is not as successful at removing all of the 

cross terms. 

The implementation technique for hyperbolic QTFRs that is based on the warping 

approach depends on the implementation technique for Cohen's class QTFRs, together with a 

signal mapping implementation and an axes transformation. Thus, since most of the algorithms 

for Cohen's class QTFRs only can efficiently analyze small blocks of data, similar problems 

exist for hyperbolic QTFRs. Hyperbolic QTFRs are more computationally involved since, for a 

signal of length N samples, the corresponding warped signal is 4 x N samples; therefore, a 

Cohen's class QTFR has to be computed for a signal that is four times longer than the initial 

signal.    Thus, in order to be able to analyze the long-duration hyperbolic whistles, the short- 

time technique was applied to hyperbolic QTFRs such as the Altes Q-distribution and its 

smoothed versions. 

Using the short-time technique for hyperbolic QTFRs, the long data was first divided into 

short sections. A hyperbolic QTFR of each time section was computed using the warping 

approach, but only the center time slice corresponding to the center of the window used to 

section the data was saved. The hyperbolic QTFR was computed first by hyperbolically warping 

the signal, computing the corresponding Cohen's class QTFR of the warped signal, and then 

transforming the time and frequency axes for correct time-frequency localization. Similar to 

Cohen's class QTFRs, memory was saved with the resulting short-time QTFR having 

dimensions of Nw /2 x N/Nw (where TV is the signal length and Nw is the length of the 
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sectioning window); the dimensions are much smaller than if computed directly (with 

dimensions Nx N). Since implementation of the hyperbolic QTFRs involves computation of 

Cohen's class QTFRs as part of the computation, hyperbolic QTFRs are more computationally 

intensive. As a result, although the analysis of long data with hyperbolic QTFRs was possible, it 

took 8-12 hours to compute. Since the computation time is not practical, it was evident that the 

algorithm required improvements to speed up processing; additional steps were taken to reduce 

the computation by eliminating unnecessary processing in the algorithm. 

The existing code for hyperbolic QTFRs was used originally to ensure that the short-time 

implementation was possible. However, these algorithms compute entire representations. The 

short-time technique, on the other hand, uses only the center time slice of each hyperbolic 

analysis of the filtered data. Thus, the computation of all the time slices was unnecessary. Each 

step of the algorithm was analyzed to determine which processing was redundant or unneeded. 

Overall, the computation time was reduced by approximately 80% (or a speedup of 5.7); the 

resulting MATLAB algorithm to compute the short-time smoothed pseudo-Altes Q-distribution 

(SPAD) is given in section A.8 in the appendix. 

The short-time technique was used with the SPAD to analyze the whistles of long-finned 

pilot whales, as these marine mammals emitted whistles with a hyperbolic time-frequency 

structure in many data files. For example, figure 14 analyzes the whistles of a long-finned pilot 

whale using a short-time SPAD. The whole data segment of JV= 32,984 samples was analyzed 

(the data was decimated nine times and it corresponds to 1.78 s), and the resulting SPAD had 

dimensions 64 x 257. The short-time SPAD clearly shows three hyperbolic whistles with \lf 

characteristic time-frequency structure. For example, the first hyperbolic whistle lasts for 0.43 s 

starting at 0.51 s. It has a bandwidth of 1.9 kHz starting with an upper frequency of 3.8 kHz and 

ending at a lower frequency of 1.9 kHz. The computation required 8.65 hours with the original 

short-time programming; after the changes were made to increase the computational speed, the 

same results were obtained in 1.52 hours. 
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Figure 14. Short-Time SPAD of Long-Finned Pilot Whale Whistles from Data File 
7703501l.kay (Note that the hyperbolic time-frequency structure 

of the whistles is matched to the hyperbolic QTFR.) 

85 



7.4 POWER CLASS QTFRs ANALYSIS OF WHISTLES 

Many marine mammals from the SOUND database emit whistles with a characteristic 

power time-frequency structure, i.e., the whistle's frequency content changes in a power fashion 

t = fK'x during the duration of the whistle. For example, initial analysis of some of the whistles 

of spotted dolphins show components with power function time-frequency characteristics. These 

types of signals would be best analyzed using power class QTFRs with variable power parameter 

K, as presented in section 4.2.3. The power QTFR would be a good analysis tool provided that 

1C 
the time shift x( f) = -j 

J r 

K-l 

/ 

power group delay function. 

preserved by the power QTFR is closely matched to the signal's 

In section 5.1, the discrete implementation of power class QTFRs was presented based on 

the fact that any power class QTFR can be obtained by warping the corresponding affine class 

QTFR as shown in equation (33).     The example in figure 15 demonstrates the advantage of 

using power class QTFRs over affine class QTFRs when analyzing signals with t = /K_1 group 

delay time-frequency characteristics. Figures 15(a) and 15(b) show the results obtained with the 

power Wigner distribution (power warped version as in equation (33) of the Wigner distribution) 

and a smoothed pseudo-power Wigner distribution (power warped version as in equation (33) of 

the affine smoothed pseudo-Wigner distribution) with a very short window, and both with K = 3 

for a two-component signal consisting of two power impulses, windowed in the frequency 

domain, with K = 3. The Kth power impulse is defined in the frequency domain as 

7' 

I[Ki(f) = 
K 

/, 
7V -j2nc\  J 

e      v  ' ,/>0. Note that the power impulse is the generalized 

impulse in equation (23) with £(b) - £K(b), and the power parameter K of the two power QTFRs 

is matched to that of the power impulses. The power Wigner distribution has very good time- 

frequency concentration, but it also results in a cross term as in equation (25) with 

£(b) = £K(b) = sgn(b)\b\K.  This cross term is effectively suppressed in the smoothed pseudo- 

power Wigner distribution with minimal loss of time-frequency concentration. 
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Figure 15. Power Class Analysis of Two Power Impulses: (a) Power Wigner Distribution with 
K = 3, (b) Smoothed Pseudo-Power Wigner Distribution with K = 3, (c) Wigner Distribution, 
(d) Affine Smoothed Pseudo-Wigner Distribution of a Two-Component Signal Consisting of 
Two Windowed Power Impulses with K = 3, (e) Power Wigner Distribution with K = 3, and 
(f) Smoothed Pseudo-Power Wigner Distribution with K = 3 of a Two-Component Signal 

Consisting of Two Windowed Power Impulses with K = 4 (Duration of signals is 128 samples.) 
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Figures 15(c) and 15(d) show the results obtained with the Wigner distribution and an 

affine smoothed pseudo-Wigner distribution, both members of the affine class. The Wigner 

distribution in figure 15(c) is not matched to the power impulses as evidenced by complicated 

cross terms. The affine smoothed pseudo-Wigner distribution in figure 15(d) does not remove 

all the cross terms and has a larger loss of time-frequency concentration than the smoothed 

pseudo power-Wigner distribution in figure 15(b). The results of the two power QTFRs with 

K = 3 in figures 15(a) and 15(b) are better than those of the corresponding two affine class 

QTFRs in figures 15(c) and 15(d) because the former are optimally matched to the power-law 

group delays of the two power impulse signal components. In order to demonstrate the effect of 

a slightly mismatched power parameter K, figures 15(e) and 15(f) show the results obtained when 

analyzing two power impulses with K = 4 (instead of K = 3) using the power Wigner distribution 

and a smoothed pseudo-power Wigner distribution with K = 3. The power QTFRs with K = 3 

used in figures 15(e) and 15(f) are the same as those used in figures 15(a) and 15(b), 

respectively, but the two power impulses now have power parameter K = 4 instead of K = 3; thus, 

the power parameters of the signal and the power QTFRs are different. The results are better 

than those of the Wigner distribution and the affine smoothed pseudo-Wigner distribution in 

figures 15(c) and 15(d) due to the fact that the power parameter mismatch in figures 15(e) and 

15(f) is smaller than that in figures 15(c) and 15(d).39'56'57 

The power class as defined in section 4.2.3 is obtained by warping the affine class. The 

power time-shift covariance property in the power class is useful in analyzing signals whose 

group delay is matched to the power time shift. The power class QTFRs also satisfy the scale 

covariance property that is important in multiresolution analysis applications. It is, however, 

possible to warp Cohen's class using the same power warping as in equation (33) to obtain the 

power warped Cohen's class,41'50 which is an example of a generalized warped Cohen's class in 

section 4.1.3 with £(b) = £K(b) as shown in table 4. The Kth power warped Cohen's class also 

satisfies the Kth power time-shift covariance property, but it does not satisfy the scale covariance 

property. Thus, if an application does not require multiresolution analysis, but it is important to 

match the power group delay of a signal (as in the case of the analysis of power whistles), then 

either a power QTFR (power warped affine QTFR) or a power warped Cohen's class QTFR may 

be used. 
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In order to analyze some of the spotted-dolphin whistles, the short-time technique was 

implemented for the Kth power QTFRs to enable large sections of the data to be analyzed in an 

on-line fashion. Using the short-time technique for power QTFRs, the long data was first 

divided into short sections, and then a power QTFR of each time section was computed using the 

warping approach in equation (33) by warping Cohen's class QTFRs or affine class QTFRs. 

When the power QTFR of the warped data section was obtained, only the center time slice was 

saved, which corresponded to the center of the window used to section the data. Similar to the 

short-time hyperbolic technique discussed in section 7.3, the computational time was also 

reduced to speed up processing. The resulting MATLAB algorithm for the short-time power 

smoothed pseudo-Wigner distribution (which is the power warped version of Cohen's class 

smoothed pseudo-Wigner distribution) is given in section A.9 in the appendix. Note that as the 

whistles of the spotted dolphins appear to start at much higher frequencies than the hyperbolic 

whistles of the long-finned pilot whales (tables 8 and 10), the data for the spotted dolphins 

cannot be decimated by a large factor for fear that high-frequency information would be lost. As 

a result, the number of samples for the spotted-dolphin whistles is very large, and although the 

computational savings have been applied to the short-time power QTFR, the computational time 

is still considerable. Using the short-time power QTFR implementation with a K = 2 power 

smoothed pseudo-Wigner distribution, 125,000 samples were analyzed from a spotted-dolphin 

whistle (decimated by a factor of 2) from data file 83035024.kay. The computational time was 

6.4 hours and the resulting analysis with a power group delay time-frequency characteristic is 

shown in figure 16. 
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Figure 16. Short-Time Power Smoothed Pseudo- Wigner Distribution with K = 2 of a Spotted- 
Dolphin Whistle from Data File 83035024.kay (Note that the power time-frequency structure 

of the whistle is matched to the power QTFR.) 
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7.5 ADAPTIVE OPTIMAL KERNEL QTFR ANALYSIS OF WHISTLES 

In the analysis of whistles consisting of long data segments, short-time time-frequency 

techniques were used to enable computations of large data on-line, such as short-time Cohen, 

hyperbolic, and power QTFRs. These short-time techniques used QTFRs whose kernels were 

fixed for the whole signal analysis. However, when the signal characteristics change with time, 

new adaptive techniques that use QTFRs whose kernels change as the signal changes are used 

for a better time-frequency analysis. When combined with the short-time techniques, the 

adaptive, signal-dependent kernel QTFRs can compute various whistle characteristics in an on- 

line, fast fashion. In particular, the short-time adaptive radially Gaussian QTFR (AOK) 62adapts 

the kernel to each set of signal components, resulting in a highly concentrated time-frequency 

representation that is best matched to linear chirps. A copy of the author's C language program 

has been obtained for the AOK, and has been applied to the whistles from the marine mammal 

database. As expected, the compiled C program is very fast as compared to the interpreted 

MATLAB programs. The intention was to apply hyperbolic and power warping to the AOK 

program in order to match the AOK to hyperbolic and power impulses. It has been discovered, 

however, that for long data, the short-time characteristic of this method looks at segments of the 

data at a time that can be approximated to linear chirps. In other words, for a long section of data 

(corresponding to one whistle), even if the whistle has a hyperbolic time-frequency structure, 

each short segment in the short-time adaptive AOK appears linear. As a result, since the AOK is 

best matched to linear chirps, the results obtained are satisfactory. It is not believed that the 

warping will give any better results; on the contrary, it will try to analyze each short segment as a 

hyperbolic impulse (when it is actually a linear chirp) and the warping will increase the 

computational time. To demonstrate the analysis obtained by the AOK, three long-finned pilot 

whale whistles from data file 77035011 .kay were considered. This file has been previously 

analyzed using the hyperbolic short-time smoothed pseudo-Altes Q-distribution in figure 14. 

Although good results have been obtained using the short-time smoothed pseudo-Altes Q- 

distribution, as the whistles have hyperbolic time-frequency structure, the computation took 1.5 

hours as discussed in section 7.3. Using the C program for the short-time adaptive radially 

The radially Gaussian QTFR is not a member of Cohen's class of time-shift and frequency-shift covariant QTFRs, 
since its kernel depends on the analysis signal. However, similar to Cohen's class QTFRs, it is matched to signals with constant 
or linear group delay characteristics. 
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Gaussian kernel, similar results were obtained (figure 17) because the AOK is matched to linear 

portions of short segments of the hyperbolic curve. The advantage of using this method is that 

the computation now only takes 0.3 hours. The difference in resolution in figures 14 and 17 is 

due to the smoothed pseudo-Altes Q-distribution in figure 14 using two smoothing windows that 

limit the time-frequency resolution, whereas the AOK in figure 17 adapts to the signal changes. 

Figure 17. Short-Time Adaptive Radially Gaussian Kernel QTFR of Long-Finned Pilot 
Whale Whistles from Data File 7703501l.kay 
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8. CONCLUSIONS 

Marine mammal sounds are time-varying signals whose frequency content changes with 

time. As a result, time-frequency analysis techniques are ideal tools for analyzing such signals, 

since time-frequency representations provide temporal localization of the time-varying signal's 

spectral components. In this project, QTFRs were used to analyze the time-frequency structure 

of cetacean mammal sounds, such as clicks and whistles emitted by dolphins and whales. An 

investigation was proposed to determine signal types and their properties, and to investigate 

which types of QTFRs are best suited for analyzing these biological signals based on the 

properties of the signals. 

As proposed, sonar signals (clicks) that are used by the marine mammals for echolocation 

were analyzed. The analysis tools used were Cohen's class QTFRs, such as the Wigner 

distribution, the pseudo-Wigner distribution, and the spectrogram. Cohen's class QTFRs were 

used because clicks were found to be short-duration, broadband, transient-like pulses with 

constant group delay characteristics and Cohen's class QTFRs are matched to signals with linear 

or constant group delay characteristics, as they preserve the signal's constant time shifts. As 

proposed, non-echolocation signals, called whistles, which are used by marine mammals for 

communication, were also analyzed. The whistles were found to be long-duration, narrowband, 

frequency-modulated, continuous tonal sounds that vary in frequency, duration, and in the shape 

of the whistle time-frequency structure, depending on the nature of the signal's frequency 

modulation. As a result, the marine mammals have different signature whistles whose group 

delay time-frequency characteristics included linear, hyperbolic, exponential, and power 

structures. Based on this, the generalized time-shift covariant QTFRs discussed in this report 

would be well-matched for analyzing the different types of whistles simply by choosing the 

corresponding group delay time-frequency structure of the whistle and matching it to the 

QTFR's time shift. In particular, it has been shown that many whistles of long-finned pilot 

whales have a t = \lf group delay characteristic that was successfully analyzed using hyperbolic 

QTFRs, i.e., QTFRs that preserve hyperbolic time shifts on the analysis signal. Initial analysis of 

some of the whistles of spotted dolphins show components with power function t = fK'i time- 
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frequency characteristics. Thus, it has been shown that power QTFRs are matched to the 

analysis of these whistles as they preserve the signal's power changes in group delay. Given a 

marine mammal whistle, some preprocessing was necessary to determine its type of time- 

frequency structure. This preprocessing was usually performed with the spectrogram and was 

based on visual conclusions. 

The MATLAB code needed for the analysis using Cohen's class QTFRs and hyperbolic 

class QTFRs already existed. But, as proposed, the MATLAB code for other QTFRs that were 

needed, such as the code for the power class QTFRs and the code for the exponential class 

QTFRs,39'42 were developed herein. During the duration of the project, the relevant theory that 

was developed in relation to the generalized time-shift covariant QTFRs was recorded.39"44'56'57 

The major problem encountered was the fact that the sample duration of the whistles was 

very large, and the MATLAB code for the various QTFRs suffered from memory management 

problems, with the system memory quickly consumed. This problem was addressed by using 

short-time time-frequency analysis techniques for Cohen's class, hyperbolic class, and power 

class QTFRs. The short-time technique yields a real-time, on-line operation that does not require 

the whole signal present in memory. Thus, the long data can be processed by the appropriate 

QTFRs without running out of system memory. Short-time data-adaptive QTFRs were also 

used, as they adapt to changes in the signal's time-frequency structure. 

The spectrogram implementation was relatively fast as a MATLAB built-in function was used for its computation. 
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APPENDIX 
MATLAB PROGRAMS 

This appendix comprises the essential MATLAB programs used for the project. 

A.1 MATLAB FUNCTION TO EXTRACT SOUND DATABASE FILE HEADER 
AND READ THE DATA (loadkay.m) 

function [y,header,Fs,Ns] = loadkay(filename,N,offset) 
%      LOADKAY      Reads WHOI .kay files. Reads N samples from filename starting at 
% offset, returns the file header, the data vector y, the sampling rate Fs 
% samples/sec and the total number of samples, Ns. 

%  Antonia Papandreou-Suppappola, 22Jan96 

%  Open file, return file descriptor 
fid = fopen(filename,'r'); 
iffid<0, 

error(sprintf('Unable to open file: %s', filename)); 
end 

%  Read header in first 512 bytes of digitized file 
header = fread(fid,512,'char'); 
%  Remove nulls 
i=find(header=0); header(i)=30*ones(size(i)); 
%  Move each field to a separate line, they are separated by '_' in file 
i=find(header='_'); 
header(i)=10*ones(size(i)); 
i=find(header='R'); 
header(i(l)-l)=10*ones(l,l); 
%  Determine the sampling rate, Fs samples/sec 
i=find(header='S');   Fs=header(i(l)+3:i(l)+8); 
Fs=setstr(Fs');   Fs=str2num(Fs); 
% Add the word 'Samples ' before the actual # of data samples 
header(l:8)='Samples '; 
% Move the # of samples next to its field title 
header(9:26)=header(27:44);   header(27:38)=15*ones(l,12); 
%  Extract # of samples, Ns 
Ns=str2num(setstr(header(9:14)')); 
% Display header in ASCII format 
header = setstr(header'); 
%disp(' '); disp(header); 
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% Read N samples of data 
ifnargin==l, 

y=fread(fid,' short'); 
elseif nargin==2, 

y=fread(fid,N, 'short'); 
elseif nargin==3, 

fseek(fid,offset*2,'cof); 
y=fread(fid,N,'short'); 

else 
error('Too many input arguments') 

end 

% close file 
fclose(fid); 
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A.2 MATLAB FUNCTIONS TO IMPLEMENT THE POWER WIGNER 
DISTRIBUTION 

A.2.1 Function power_WD.m 

function [PWD] = power_WD(x,kappa); 
%  POWERWD       This function computes the kappa power Wigner distribution (PWD) of 
% the time domain, analytic signal x (that is, the Fourier transform of x is 
% zero for negative frequency). The resulting PWD is an N x N matrix, 
% where N is the length of x. To increase computational speed, N must be a 
% power of 2. 

% Antonia Papandreou-Suppappola 26April96 

%  Power warp the signal in the frequency domain 
[warptimesig, M, df, dv, length2]=prewarp_PC(x,kappa); 
%  Compute the Wigner distribution, wdwarp, of the warped signal, warptimesig 
wd_warp=wd( warptimesig); 
%  Transform the time and frequency axes of the Wigner distribution to obtain PWD 
PWD=unwarp_PC(wd_warp, M, df, dv, length2, kappa); 

%  Plotting options 
df=0.5/size(PWD,2); f=0:df:0.5-df; 
ml=max(max(PWD)); contour_level=[0.1 *ml:0.2*ml:0.9*ml]; 
%  For contour plot 
subplot(311); contour(l:size(PWD,2),f,flipud(PWD),contour_level); 
title('Power Wigner distribution'); 
xlabel('time samples'); ylabel('norm. frequency'); 
%  For mesh plot 
subplot(312); mesh(l :size(PWD,2),f,flipud(PWD)); 
title('Power Wigner distribution'); 
xlabel('time samples'); ylabel('norm. frequency'); 
% For imagesc plot 
subplot(313) 
imagesc(l:size(PWD,2),f,flipud(PWD),contour_level); axis xy; colormap(jet); 
title('Power Wigner distribution'); 
xlabel('time samples'); ylabel('norm. frequency'); 
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A.2.2 Function prewarpPC.m 

function [warptimesig, M, df, dv, length2]=prewarp_PC(input,kappa); 
% PREWARPPC Function that power warps with power kappa>l the input time signal to 
% obtain the time signal, warptimesig. M is the number of samples in the 
% warped DFT of the input signal (before zeropadding), df is the frequency 
% sampling rate at which the input signal is assumed to be sampled, and dv 
% is the frequency sampling rate at which the warped signal is assumed to be 
% sampled. Iength2 is the length of warptimesig. 

% Antonia Papandreou-Suppappola March95 for power classes 
%  Kyle Canfield 1991 for hyperbolic class 

u = 8; % Set upsampling rate for DFT of input signal 
L = length(input);       % Set length of input signal 
N = u*L; % Set length of zeropadded input signal 
inputzero = [input zeros(size(l :N-L))]; % Initialize zeropadded input 
fftinsig = fft(inputzero); % Determine DFT of zeropadded input signal 

%  Determine M, df, dv 
df=2/L; 
M = 2*N/u; 
dv = ((df/u)*N/2 )A(1/kappa) / M; 

%% To ensure that no aliasing occurs in the warped signal 
%form=l:M-l, 
%  test(m) = ((m+l)*dv)A(l/kappa) - (m*dv)A(l/kappa);  ' 
%  iftest(m)>df 
%        dispCTHERE WILL BE ALIASING IN THE WARPED SIGNAL!!') 
%        break 
%  end 
%end 

%  Weight X(f) by inverse of square root of characteristic group delay function 
groupdelay = 0; 
for count = 0:(N/2)-l 

group_delay(count+l) = kappa * (df* (count+1) )A(kappa-l); 
fftinsig(count+l) = fftinsig(count+l)/sqrt(group_delay(count+l)); 

end 

%  Determine the samples of the warped DFT of the input signal 
fftexpinsig(l) = fftinsig(l); 
for count = 1:M-1 

est = ( ((count+l)*dv)A(l/kappa) )/df*u; 
estint = floor(est); 
dif = ( fftinsig(estint+l)-fftinsig(estint) )*(est-estint); 
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fftexpinsig(count+l) = dif + fftinsig(estint); 
end 

%  Shift the samples of warped DFT of the input signal into an actual DFT form 
%  and bandlimit to 1/4 of sampling rate 
fftwarp=fftshift([zeros(l,M/2), fftexpinsig, zeros(l,M/2)]); 
warptimesig = ifft(fftwarp);   % Find a time-domain version of the warped DFT 
length2=(L/2)*4*2; 

A.2.3 Function wd.m 

function [W]=wd(x,NF) 
% WD This function calculates the Wigner distribution (W) of the signal x where x must be 
% a column vector. W is a real N x NF matrix, where N=length(x). If NF is not specified, 
% then NF = N provided that N is even; otherwise, NF = N + 1. For speed purposes, 
% NF should be a power of 2! 

% Antonio H. Costa, April 2, 1992 

[rows cols] = size(x); 
N = length(x); 
if cols ~= 1, x=x.'; end 
ifnargin== 1, 

ifrem(N,2)==l, 
NF = N+1; 

else 
NF = N; 

end 
elseifnargin = 2, 

ifrem(N,2)==0, 
ifNF<N, 

error('Number of FFT points must be >= to the length(x)'); 
end 

else 
ifNF<N, 

error('Length(x) cannot be greater than the number of FFT points'); 
end 

end 
else 

error('Only 1 or 2 arguments allowed!...'); 
end 
M = N-1; 
L = N/2; 
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x = [zeros(L-l,l);x;zeros(L+l,l)]; 
q = zeros(N,N); 
forj = l:N, 

q(2:N,j) = x()':M+j-l) .* conj(x(M+j-l:-l:j)); 
end 
q=[q(fix(N/2)+l:N,:); zeros(NF-N,N); q(l:fix(N/2),:)]; 
W = 2 * fft(q); 
W = real(fftswap(W)); 
W = flipud(W); 

A.2.4 Function fftswap.m 

function [r]=fftswap(A) 
%  FFTSWAP Swaps the order of the rows of matrix A. 

[rows cols] = size(A); r = [A(fix(rows/2)+l:rows,:);A(l:fix(rows/2),:)]; 

A.2.5 Function unwarpPC.m 

function [PC_QTFR]=unwarp_PC(gg, M, df, dv, length2, kappa); 
% UNWARPPC     % Function that transforms the time-frequency axes of the affine class 
% QTFR of the warped signal, gg, for correct time-frequency localization to 
% obtain the corresponding kappa power class QTFR, PCQTFR. M is the 
% number of samples in the warped DFT of the input signal (before 
% zeropadding), df is the frequency sampling rate at which the input 
% signal is assumed to be sampled, and dv is the frequency sampling rate 
% at which the warped signal is assumed to be sampled. Iength2 is the length 
% of the warped time signal. Note that the affine QTFR of the warped 
% signal has dimensions length 2 x length2 and the resulting PCQTFR 
% has dimensions length2/4 x length2/4. 

%  Antonia Papandreou-Suppappola June95 for power classes 
%  Kyle Canfield 1991 for hyperbolic class 

L=length2/4; % Determine dimensions of power QTFR based on affine QTFR dimensions 
start = 1; stop = L-l; % Initialize start and stop variables 
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% Find matrix alt with correct frequency locations of input signal components 
for count=0:length2-l 

countd=count+l;     % Set up time sample counter from 1 to length2 
for count2=l: start 

count 1 =L-count2+1; 
alt(countl, countd)=0; % Zero out frequencies in alt not to be calculated, ones with index L 

end 
for count2=start:stop 

est=((count2*df/2)Akappa)/dv;     % Find the frequency sample on [1,M] to which 
% the frequency sample count2 in alt corresponds 

est=est+length2/4-M;       % Compensate for the frequency shifting done 
% to the warped signal in PREWARP. As a result, 
% est in on the interval [-length2/4, length2/4] 

est=est*2;    % Now est is on the interval [-length2/2, length2/2] 
est=est+length2/2;      % Now est is on the interval [0, length2] and 

% corresponds to a frequency in gg 
estint=floor(est);        % Find the largest integer smaller than est 
est=length2-est+1;     % Correct est to correspond to the right frequency 

% as indexed by Matlab 
estint=length2-estint+l;   % Determine two integers (estint and estint+1) 

% between which est lies. These integers 
% correspond to frequency samples of gg between 
% which UNWARP will interpolate to get the 
% correct value for the sample of interest in alt 

count l=L-count2+l; % Correct the frequency index of alt to correspond to 
% the indexing system used by Matlab 

alt(countl-l, countd) = 0;    % initialize the new matrix values to zero 
% note that countd is the current time sample 

ifestint>0 
if estint<=length2    % Be sure estint is within the index limits of gg 

diff=(gg(estint-l, count+l)-gg(estint, count+l))*(est-estint); 
alt(countl-l, countd) = diff+gg(estint-l, count+1); 
% Interpolate between the two integers estint and estint+1 to find 
% the correct value for the sample of interest in alt 

end 
end 

end 
end 

% Find a matrix PCQTFR, the power QTFR, which shows the correct time and frequency 
% locations of signal components in the input signal 
PC_QTFR=zeros(L,L); % Initialize PC_QTFR 
for countl=l:L % time samples 

for count2=l:L % frequency samples 
freqcnt=L-count2+l;   % Correct the frequency index to correspond 

% to Matlab's indexing system; freqcnt=frequency row 
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expand 1 =freqcnt/L; 
expand=kappa*expandlA(kappa-l);        % Determine amount to expand freqcnt 
expand=l/expand; % expand factor is inverted since time is inversely 

% proportional with frequency relation 
arg = (count 1 -1 )*expand+1;   % Find a sample in alt that corresponds 

% to the sample of interest in PCQTFR 
intarg = floor(arg);   % Determine two integers (intarg and intarg+1) 

% between which arg lies. These integers correspond 
% to time samples of alt between which UNWARP will 
% interpolate to get the correct value for the 
% sample of interest in PCQTFR 

if intarg>=l    % Be sure intarg is within the index limits of alt 
if intarg < length2 

diff2=(alt(count2, intarg+1 )-alt(count2,intarg)) * (arg-intarg); 
PC_QTFR(count2, count 1) = diff2+alt(count2,intarg); 

% Interpolate between the two integers intarg, intarg+1 to find the 
% correct value for the sample of interest in PCQTFR 

end 
end 
if intarg<l 

PC_QTFR(count2,countl )=alt(count2,1); 
% Use sample value at first time sample if intarg < 1, in which case 
% there is no sample at zero to use in interpolating between zero and one 
end 

end 
end 
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A.3 MATLAB FUNCTION TO PLOT A SECTION OF THE DATA, ITS FOURIER 
TRANSFORM, WIGNER DISTRIBUTION, AND SPECTROGRAM 
(dataanalysis.m) 

function [y,Y,WD,SPEC] = data_analysis(filename,N,offset) 
% DATAANALYSIS Reads and plots data, computes and plots Fourier transform (FT), 
% Wigner distribution (WD) and spectrogram. Reads N samples from 
% filename starting at offset sample, returns the data y, its FT Y, its 
% WD, and its spectrogram, SPEC. To start at the beginning 
% of the data, offset is set to zero. To read all the data, omit N and 
% offset. When all the data is read, the WD is not plotted. Instead, 
% the data is decimated to a sampling frequency of 8,192 Hz to 
% sound as actually recorded. 
% The WD algorithm is not computationally efficient for N > 1024. 

% Antonia Papandreou-Suppappola, 29Jan96 

%  Obtain the header information of the digitized file, 
% read data vector y of length N and sampling rate, Fs 
if nargin== 1, 

[ys,header,Fs,Ns]=loadkay(filename); 
N=length(ys); 
dispC '); disp(header); 

else 
[ys,header,Fs,Ns]=loadkay(filename,N,offset); 
dispC '); disp(header); 

end 

% Reset axis 
clf;subplot(lll);gcf; 

% To remove really low frequencies due to engine noise 
b=firl(40,0.08,'high'); % High pass filter 
% To check frequency response 
[h,w]=freqz(b, 1,256); plot(w,abs(h)); 
y=conv(ys,b); y=y(20:N+20-l); 

% Plot the data 
Ts=l/Fs; 
t=[offset:(N+offset-l)]*Ts; 
subplot(411); 
plot(t, y); xlabel('time, s'); ylabel('amplitude'); 
title(sprintf('Digitized %g data samples from %s', N, filename)); 
axis([offset*Ts (N+offset-l)*Ts min(y) max(y)]); figure(gcf) 

A-9 



%  Compute and plot the Fourier transform of the data 
%  Plot only positive half of spectrum since symmetric FFT (real data) 
Y=fft(y); 
f=[0:((N/2)-l)]/N*Fs; 
subplot(412); 
plot(f,abs(Y(l :N/2))); ylabel('magnitude'); 
%plot(f,20*loglO(abs(Y(l:N/2)))); ylabel('magnitude in dB'); 
xlabelCfrequency in Hz'); title('Fourier transform of the data'); figure(gcf) 

ifN<=1024, 
% Compute and plot the Wigner distribution provided data length is small 
WD=wd(y,N); 
WD=WD(N/2+l :N,:); % Since real, keep only half the frequencies 
subplot(413); 
f=[0:N/2-l]/N*Fs/2; 
imagesc(t,fliplr(f),WD); title('Wigner distribution of the data') 
ylabel('frequency, Hz'); xlabel('time, s'); figure(gcf) 

else 
%  Decimate to sampling frequency of 8,192 Hz to sound as actually recorded 
%  Resample data at a lower rate after lowpass filtering 
decimation_factor=round(Fs/8192); 
Dy=decimate(y,decimation_factor); 
DFs=Fs/decimation_factor; % DFs=8192; 
DTs=l/DFs; 
DN=N/decimation_factor; 
Dt=[0:(DN)]*DTs; 
subplot(413); 
plot(Dt, Dy); xlabel('time, s'); ylabel('amplitude'); 
title(sprintf('Data decimated by a factor Fs/8192=%g', decimationfactor)); 
figure(gcf) 

end 

%  Compute and plot the spectrogram of the data 
%  If length of data is small, use smaller window length for better resolution 
%  For clicks, use small window length (e.g. 4 or 8) since need better time res. 
subplot(414) 
ifN<=1024, 

SPEC=specgram(y,256,Fs,8,7);      % built-in Matlab program 
else 

SPEC=specgram(y,256,Fs); 
end 
f=[0:N/2-l]/N*Fs; 
imagesc(t,f,abs(SPEC));axis xy; colormap(jet); 
title('Spectrogram of the data') 
ylabel('frequency, Hz'); xlabel('time, s'); 
figure(gcf) 
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A.4 MATLAB FUNCTION TO COMPUTE THE PIECEWISE WIGNER 
DISTRIBUTION (piece_wd.m) 

function [WD]=piece_wd(filename,N,decimation_factor,timeoffset) 
%        PIECEWD    Computes the Wigner distribution (WD) of Nwd blocks of data, each 
% block 256 samples long such that the total section analyzed is N samples. 
% The WDs of the various blocks are plotted consecutively. The section 
% analyzed starts at time timeoffset. The data is first decimated by a factor 
% decimationfactor. 

% Antonia Papandreou-Suppappola 24Feb 1996 

%  Load data 
[ydata,header,Fs,Ns]=loadkay(filename); 
disp(' '); disp(header); % Display header 

% Duration of digitized cut 
T=Ns/Fs; disp(' '); disp(sprintf('Signal duration in seconds: %g',T)); 

L=256; % Length of each block of Wigner distribution 
Nwdmax=floor(Ns/L); % Number of Wigner distributions to be computed for all data 
Nwd=N/L; % Number of Wigner distributions of length L that are computed 

% Subtract dc value to remove initial frequencies due to recording equipment 
ydata=ydata-mean(ydata); 
% Highpass filter to remove really low frequencies due to engine noise 
b=firl(40,0.08,'high'); 
ydata=conv(ydata,b);Ndata=size(ydata); 
ydata=ydata(20:Ns+20-1);     % since length increased by 40 samples 

% Decimate the data to compute larger sections of WD 
y=decimate(ydata,decimation_factor); 
Fs=Fs/decimation_factor;Ns=Ns/decimation_factor; 

%  Offset sample 
offset=floor(timeoffset*Fs/L); 

% Compute the WD of each block and piece it together 
WD=[]; 
for i=offset:(Nwd+offset)-l, 

WD=[WD wd_real(y(i*L+l:(i+l)*L))]; 
end 

% Plot piecewise WD 
twd=[(offset*L+l):(offset+Nwd)*L]/Fs; 
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fwd=[0:L/2-l]/L*Fs/2;m2=max(max(WD)); 
imagesc(twd,fliplr(fwd),WD);axis xy; colormap(jet); 
title('Piecewise Wigner distribution of the data') 
ylabel('frequency, Hz'); xlabel('time, s'); 
hold on 
fork=0:Nwd-l, 

plot([((offset+k)*L+l)/Fs ((offset+k)*L+l)/Fs], [min(fwd) max(fwd)],'red') 
end 
hold off 

% Plot data analyzed 
tsignal=[(offset*L+l):(offset+Nwd)*L]/Fs; 
ysection=y (offset * L+1: (Nwd+offset) * L); 
plot(tsignal,ysection); 
axis([(offset*L+l)/Fs (offset+Nwd)*L/Fs min(ysection) max(ysection)]) 
title('Chosen section of time signal'); xlabel('time, s') 

% Plot FT of data analyzed 
K=L*Nwd; 
fsignal=[0:K/2-l]/K*Fs; 
Y=fft(y(offset*L+l:(Nwd+offset)*L)); 
plot(fsignal,abs(Y(l :K/2))); 
title('FT of chosen section'); xlabel('frequency, Hz'); 

% Plot spectrogram of whole data 
tspec=[l:Ns]/Fs; 
fspec=[0:L/2-l]/L*Fs; 
SPEC=specgram(y,256,Fs); 
imagesc(tspec,fspec,abs(SPEC));axis xy; colormap(jet); 
title('Spectrogram of the data') 
ylabelCfrequency, Hz'); xlabel('time, s'); 
hold on; 
plot([(offset*L+l)/Fs (offset*L+l)/Fs], [min(fspec) max(fspec)],'red'); 
plot([(offset*L+Nwd*L)/Fs (offset*L+Nwd*L)/Fs], [min(fspec) max(fspec)],'red'); 
hold off 

% Plot spectrogram of section of data only 
tsignal=[(offset*L+l):(offset+Nwd)*L]/Fs; 
f=[0:L-l]/L*Fs/2; 
ysection=y(offset*L+l:(Nwd+offset)*L); 
SPEC=specgram(ysection,256,Fs,64,23); 
imagesc(tsignal,f,abs(SPEC));axis xy; colormap(jet); 
title('Spectrogram of the section') 
ylabelC frequency, Hz'); xlabel('time, s'); 
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A.5 MATLAB FUNCTION TO COMPUTE VARIOUS QTFRS OF A SECTION OF THE 
DATA (varioustfrs.m) 

function [WD,SPEC,PWD,SPWD,AD,PAD,power_WD,power_PWD]=various_tfrs(filename,N, offset); 
% VARIOUS_TFRS Computes various QTFRs of a block of data of length N starting at the 
% offset. The QTFRs include the Wigner distribution (WD), the spectrogram 
% (SPEC), the pseudo Wigner distribution (PWD), the smoothed pseudo 
% Wigner distribution (SPWD), the Altes Q-distribution (AD), the pseudo 
% Altes Q-distribution (PAD), the power Wigner distribution (power_WD), 
% and the power pseudo Wigner distribution (powerPWD). 

% Antonia Papandreou-Suppappola 24April 1996 

[y,header,Fs,Ns]=loadkay(filename,N,offset); 
disp(' '); disp(header); 

%  Duration of digitized cut 
T=Ns/Fs; 
disp(' '); disp(sprintf('Signal duration in seconds: %g',T)); 

%  Subtract dc offset due to recording equipment 
%y=y-mean(y); 
%  Highpass filter to remove really low frequencies due to engine noise 
b=firl(40,0.05,'high'); 
ysection=conv(y,b); ysection=ysection(20:N+20-1); 

tsignal=[(offset+l):(offset+N)]/Fs; 

% WD of section 
f=[0:N/2-l]/N*Fs/2; 
WD=wd(ysection); WD=flipud(WD); 
WD=WD(N/2+l :N,:); % Since real, keep only half the frequencies 
imagesc(tsignal,f,WD);axis xy; colormap(jet); 
title(sprintf('WD, filename = %s', filename)) 
ylabel('frequency, Hz'); xlabel('time, s'); 

% Spectrogram of section 
f=[0:N/2-l]/N*Fs/2; 
SPEC=spec(ysection,hamming( 11 ),N); 
SPEC=flipud(SPEC); SPEC=SPEC(N/2+l :N,:); 
imagesc(tsignal,f,abs(SPEC));axis xy; colormap(jet); 
title(sprintf('SPEC, filename = %s', filename)) 
ylabel('frequency, Hz'); xlabel('time, s'); 

A-13 



% Pseudo WD of section 
f=[0:N/2-l]/N*Fs/2; 
PWD=pwd(ysection,hanning(l 1),N); 
PWD=flipud(PWD); PWD=PWD(N/2+l :N,:); % Since real, keep only half the frequencies 
imagesc(tsignal,f,PWD);axis xy; colormap(jet); 
title(sprintf('PWD, filename = %s', filename)) 
ylabel('frequency, Hz'); xlabel('time, s'); 

% Smoothed Pseudo WD of section 
f=[0:N-l]/N*Fs/2; 
SP WD=spwd(ysection,hanning( 11 ),blackman(3 3 ),N); 
SPWD-flipud(SPWD); 
SPWD=SPWD(N/2+l :N,:);   % Since real, keep only half the frequencies 
imagesc(tsignal,f,SPWD);axis xy; colormap(jet); 
title(sprintf('SPWD, filename = %s', filename)) 
ylabel('frequency, Hz'); xlabel('time, s'); 

% Altes Q-distribution of section 
input=hilbert(ysection); input=input.'; % to make data analytic 
[warptimesig, M, df, dv, length2]=prewarp_HC(input);   % warp data 
gg=wd(warptimesig.'); % compute WD of warped data 
AD=unwarp_HC(gg, M, df, dv, length2);      % transform time and frequency axes 
f=[0:N-l]/N*Fs/2; 
imagesc(tsignal,f,flipud(AD));axis xy; colormap(jet); 
title(sprintf('AD, filename = %s', filename)) 
ylabel('frequency, Hz'); xlabel('time, s'); 

% Pseudo Altes Q-distribution of section 
input=hilbert(ysection); input=input.'; % to make data analytic 
[warptimesig, M, df, dv, length2]=prewarp_HC(input); % warp data 
gg=pwd(warptimesig.' ,hamming( 11 ),length2); % compute PWD of warped data 
PAD=unwarp_HC(gg, M, df, dv, length2);   % transform time and frequency axes 
f=[0:N-l]/N*Fs/2; 
imagesc(tsignal,f,flipud(PAD));axis xy; colormap(jet); 
title(sprintf('PAD, filename = %s', filename)) 
ylabel('frequency, Hz'); xlabel('time, s'); 
% Power WD of section 
input=hilbert(ysection); input=input.'; 
kappa=2; % kappa>l 
[warptimesig, M, df, dv, length2]=prewarp_PC(input,kappa); % warp data 
gg=wd(warptimesig.'); % compute WD of warped data 
power_WD=unwarp_PC(gg, M, df, dv, length2,kappa);      % transform time and frequency axes 
f=[0:N-l]/N*Fs/2; 
imagesc(tsignal,f,flipud(power_WD));axis xy; colormap(jet); 
title(sprintf('Power %g WD, filename=%s', kappa, filename)) 
ylabelCfrequency, Hz'); xlabel('time, s'); 
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% Power pseudo WD of section 
input=hilbert(ysection); input=input.'; 
kappa=2; % kappa>l 
[warptimesig, M, df, dv, length2]=prewarp_PC(input,kappa); % warp data 
gg=pwd(warptimesig.',hamming(l l),length2); % compute PWD of warped data 
power_PWD=unwarp_PC(gg, M, df, dv, length2,kappa); % transform time and frequency axes 
f=[0:N-l]/N*Fs/2; 
imagesc(tsignal,f,flipud(power_PWD));axis xy; colormap(jet); 
title(sprintf('Power %g pseudo WD, filename=%s', kappa, filename)) 
ylabel('frequency, Hz'); xlabel('time, s') 
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A.6 MATLAB FUNCTION TO COMPUTE THE SMOOTHED PSEUDO-WIGNER 
DISTRIBUTION USING A DIRECT METHOD (spwd_dir.m) 

function [SPWD] = spwd_dir(x,wf,wt) 
% SPWDDIR         Computes the smoothed pseudo Wigner distribution (SPWD) of the time 
% domain signal x using a frequency window wf, and a time window wt. On 
% exit, the SPWD is an M x length(x) real matrix, where M is the length of 
% the longest window. The local autocorrelation function (LAF) of x 
% is first computed and then convolved with the time-smoothing window wt. 
% The LAF is updated so that the previous value can be used to compute the 
% next value. The result of the convolution then gets multiplied with the 
% squared magnitude of the frequency-smoothing window, and then the 
% Fourier transform of the product is obtained. Note that the length of the 
% windows must be smaller than that of the signal, and the length of wt must 
% be even. 

%  Byeong-Gwan lern, 21 June 1996; Antonia Papandreou-Suppappola, 27June 1996 

[rows cols] = size(x); 
if cols ~= 1, x=x.'; end % make column vector 

N=length(wt); % size of window for time smoothing 
M=length(wf); % size of window for frequency smoothing 
Lshift=(N-l); % shifting amount for compensating the time delay in resulting QTFR 
M1=M; 
x=[x;zeros(Lshift, 1)]; 
ndata=length(x); % Number of samples in the time domain 
wt=flipud(wt); % Time reversal of the time domain window 

if M > N % Relocation of frequency smoothing window 
wf=[wf(fix(M/2)+l :M,l);wf(l :fix(M/2),l)]; 

else 
wf=[wf(fix(M/2)+l:M,l);zeros(N-M,l);wf(l:fix(M/2),l)]; 
M1=N; 

end 
fork=l:N, 

wtl(:,k)=wt;    % Construction of window matrix by stacking the window vector 
end 
L=N/2; 
q=zeros(N,N); % Initialization of a block of LAF 
x 1 =zeros(N, 1);   % Initialization of a block of data 
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fork=l:ndata, 
q(2:N,:)=q(l:N-l,:); % Shifting of LAF for updating it 
% Calculation of local correlation vector at current time index 
xl=[x(k,l);xl(l:(N-l),l)]; 
x2=[zeros(L-1,1 );x 1 ;zeros(L+l, 1)]; 
q(l ,2:N)=conj(x2(L: 1 :(N+L-2))').*x2((N+L-2):-l :L)'; 
% Time domain smoothing 
q 1 =conj(sum(q. *wt 1)');      % Convolution at current time index 
ifN<M, 

ql=[ql(fix(N/2)+l:N,:);zeros((M-N),l);ql(l:fix(N/2),:)]; 
else 

ql=[ql(fix(N/2)+l:N,:);ql(l:fix(N/2),:)]; 
end 
% Frequency domain smoothing 
ql=ql.*(wf.A2); 
C = 2*fft(ql); C = real(fftswap(C)); 
Cl(:,k) = C(Ml/2+l:Ml);   % To only keep the high frequencies for real data 

end 
Cl=[Cl(:,Lshift:ndata) Cl(:,l :(Lshift-l))]; % compensating for the time delay 
SPWD=[C 1 (:, 1 :(ndata-Lshift))];        % compensating for the end effect 
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A.7 MATLAB FUNCTIONS TO COMPUTE THE SMOOTHED PSEUDO-WIGNER 
DISTRIBUTION USING THE SHORT-TIME TECHNIQUE 

A. 7.1 Function stafcetm 

function [SPWD] = stafcet(filename,decimation_factor,timeoffset,L,freq_window,time_window) 
% STAFCET           Computes the short-time smoothed pseudo-Wigner distribution (SPWD) 
% using the short-time ambiguity function (STAF). It computes the 
% ambiguity function of the windowed data, multiplies it with the fixed 
% kernel, takes two-dimensional FFT, and keeps only the time-slice at the 
% center of the windowed data for the resulting QTFR. The resulting QTFR 
% has dimensions (Nw x N/Nw) where N is the data length, and Nw is length 
% of the rectangular window used to segment the data. The sound data is 
% decimated by a factor decimationfactor. The data starts at time timeoffset 
% and has length L. The frequency window of the SPWD is freq_window, 
% and the time window of the SPWD is timewindow. 

% Antonia Papandreou-Suppappola, 17Julyl996 

[y,header,Fs,Ns]=loadkay(filename); 
disp(' '); disp(header); 

T=Ns/Fs;        % Duration of digitized cut 
disp(' '); disp(sprintf('Signal duration in seconds: %g',T)); 
t_y=[l:Ns]/Fs;plot(t_y,y); 

% Highpass filter to remove low frequencies due to engine noise 
b=firl(40,0.05,'high'); 
y=conv(y,b); y=y(20:Ns+20-l);   % since length of y increased by 40 samples 

ydec=decimate(y,decimation_factor);   % Decimate the data to reduce number of samples 
Fsdec=Fs/decimation_factor; Nsdec=length(ydec); 
%t_ydec=[l :Nsdec]/Fsdec; plot(t__ydec,ydec); specgram(ydec,256,Fsdec); 

% Choose a section, starting at timeoffset sees 
offset=floor(timeoffset*Fsdec); 
tsection=[(offset+1 ):offset+L]/Fsdec; 
ysection=ydec(offset+l :offset+L);    % From decimated signal 
duration_signal_analyzed=max(tsection)-min(tsection); 

% Start computation of short-time SPWD 
Nw=256;   % length of windowed signal 
time_sections=floor(L/Nw);    % number of signal sections 
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% examples of windows for SPWD 
%freq_window=hamming( 140); time_window=blackman( 121); 
%ker_WD=ones(Nw,Nw); % Compute Wigner distribution kernel 
ker_SPWD=kerspwd(Nw,Nw,freq_window,time_window); % Compute SPWD kernel 

for i=l:time_sections, 
ywindow=ysection((i-l)*Nw+l :i*Nw);     % shift rectangular window to segment data 
twindow=(i-l)*Nw+l:i*Nw; % section of time covered 
% plot(twindow,abs(ywindow)) 
AFwindow=af(ywindow);     % Compute AF of windowed data, STAF 
AFproduct=AFwindow.*ker_SPWD; % Obtain STAF and kernel product 
SPWD(:,i)=aftowd_section(AFproduct);   % Compute 2-D FFT and keep only center time of 

window 
end 
SPWD=SPWD(Nw/2+l :Nw,:); % For real data, keep only positive frequencies 
f=[0:Nw/2-l]/Nw*Fsdec/2;    % frequency range depending on Fsdec 
t=Nw/2:Nw:L-Nw/2; % each time slice is the center of the xsection 

% To obtain an image plot of the SPWD 
m2=max(max(SPWD)); contour(tsection,f,flipud(SPWD),[0.1 *m2:0.2*m2:0.9*m2]); 
imagesc(tsection,fliplr(f),flipud(SPWD));axis xy; colormap(jet); 
title(sprintf('SPWD, filename = %s', filename)); ylabel('frequency, Hz'); xlabel('time, s'); 

A. 7.2 Function kerspwd.m 

function [ker]=kerspwd(Ntau,Nnu,h,g) 
%       KERSPWD Computes the smoothed pseudo-Wigner distribution (SPWD) kernel in the 
% ambiguity domain, ker is a Nnu x Ntau matrix with entries given by 
ker(v,g) = 
% n(g/2) * conj(n(-g/2)) * G(v) where G(v) represents the Fourier transform 
of 
% window function g, and h is a window function. 

% Antonio H. Costa, March 13, 1993 

ker=kerpwd(Ntau,Nnu,h); Lx=Ntau; Lg=length(g); Ng=(Lg - l)/2; Nx=Lx / 2; 
gx=zeros(Lx,l); gx(l:Ng+l)=g(Ng+l:Lg); gx(Lx-Ng+l:Lx)=g(l:Ng); gg=fft(gx); 
gg=fftshift(gg); 
for i = 1 :Ntau, 

ker(:,i) = ker(:,i).*gg; 
end 
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A. 7.3 Function kerpwd.m 

function [ker]=kerpwd(Ntau,Nnu,h) 
%   KERPWD Computes the pseudo Wigner distribution (PWD) kernel in the ambiguity 
% domain, ker is a Nnu x Ntau matrix with entries given by ker(v,g) = n(g/2) 
% * conj(n(-g/2)). h is the window function. 

% Antonio H. Costa, March 13, 1993 

h = h .* conj(h(length(h):-l: 1)); Lh = length(h); Nh = round((Lh - 1) / 2); Nx = Ntau / 2; 
hx = zeros(Ntau,l); hx(Nx - Nh + 1 :Nx - Nh + Lh) = h; ker = zeros(Nnu,Ntau); 
forj = l:Nnu, 

ker(j,:) = hx.'; 
end 

A. 7.4 Function af.m 

function [A]=af(x,NF) 
% AF This function calculates the ambiguity function (AF) of the signal x where x must be a 
%        column vector. A is a complex NF x N matrix, where N=length(x). If NF is not specified, 
%        then NF=N, provided that N is even; otherwise, NF=N+1. For speed purposes, NF should 
%        be a power of 2! 

% Antonio H. Costa, March 13, 1993 

N = length(x); [rows cols] = size(x); 
if cols ~= 1, x=x.'; end 
if nargin== 1, 

ifrem(N,2)==l, 
NF = N+1; 

else 
NF = N; 

end 
elseif nargin = 2, 

if rem(N,2) = 0, 
ifNF<N, 
error('Number of FFT points must be >= to the length(x)'); 
end 

else 
ifNF<N, 
error('Number of FFT points must be larger than length(x)'); 
end 

end 
else 
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error('Only 1 or 2 arguments allowed!...'); 
end 
M = N-l;L = N/2;x = [zeros(L-l,l);x;zeros(L+l,l)]; q = zeros(N,N); 
forj = l:N, 

q(2:Nj) = xö:M+j-l).*conj(x(M+j-l:-l:j)); 
end 
q=[q(:,N/2+l:N) zeros(N,NF-N) q(:,l:N/2)]; 
A = 2 * fft(q.',NF); A = fftswap(A); A = flipud(A); 

A. 7.5 Function aftowd_section.m 

function [Wsection] = aftowdsection(A) 
% AFTOWDSECTION       Computes the two-dimensional FFT of A for only one time slice. 
% The matrix A should be viewed as having "time lag" increasing as 
% one progresses along each column, with column 1 representing 
% time lag -K where K equals the number of columns of A. 

%  Antonia Papandreou-Suppappola, 7Julyl996 
% Antonio H. Costa, March 13, 1993 

[rows cols] = size(A); 
if rows > cols, 

k = (rows - cols) / 2; 
A = [zeros(rows,k) A zeros(rows,k)]; 

end 
A = fftshift(A); 
A = fft(A. ',rows);       % Take FT of each row 
A = A.';A = flipud(A); 
W = ifft(A); W = W.'; W = flipud(W); W = real(W); 
W = fftswap(W); W = fftswap(W.'); W = W.'; 
if rows > cols, 

W = W(:,k+l:k+cols); 
end 
W=fftswap(flipud(W)); 
Wsection=W(:,cols/2);    % keeping only the center time slice 
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A.8 MATLAB FUNCTION TO COMPUTE THE SMOOTHED PSEUDO-ALTES Q- 
DISTRIBUTION USINGTHE SHORT-TIME TECHNIQUE (hcstafcet.m) 

function [SPAD] = hcstafcet(filename,decimation_factor,timeoffset,L,freq_window,time_window) 
% HCSTAFCET      Computes the hyperbolic class smoothed pseudo-Altes Q-distribution (SPAD) 
% by hyperbolically warping the signal, computing Cohen's class smoothed 
% pseudo-Wigner distribution (SPWD) of the warped signal, and transforming the 
% axes for correct time-frequency localization. When the axes are transformed, only 
% the time-slice at the center of the windowed data for the resulting QTFR is 
% kept. The resulting SPAD has dimensions (Nw x N/Nw) where N is the length of 
% the data, and Nw is length of the rectangular window used to segment the data. 
% The sound data is decimated by a factor decimationfactor. The data to be 
% analyzed starts at time timeoffset and has length L. The frequency window of the 
% SPWD is freq_window, and the time window of the SPWD is timewindow. 

%   Antonia Papandreou-Suppappola, 27Julyl996 

[y,header,Fs,Ns]=loadkay(filename); 
disp(' ');disp(header); 

% Duration of digitized cut 
T=Ns/Fs; disp(' '); disp(sprintf('Signal duration in seconds: %g',T)); 
%t_y=[l:Ns]/Fs;plot(tjy,y); 

% Highpass filter to remove low frequencies due to engine noise 
b=firl(40,0.05,'high'); 
y=conv(y,b); y=y(20:Ns+20-l); % since length of y increased by 40 samples 

% Decimate the data to reduce number of samples 
ydec=decimate(y,decimation_factor); 
Fsdec=Fs/decimation_factor; Nsdec=length(ydec); 
%t_ydec=[l :Nsdec]/Fsdec; plot(t_ydec,ydec); specgram(ydec,256,Fsdec); 

% Choose a section, starting at timeoffset sees 
offset=floor(timeoffset*Fsdec); 
tsection=[(offset+l):offset+L]/Fsdec; 
ysection=ydec(offset+l :offset+L); % From decimated signal 
duration_signal_analyzed=max(tsection)-min(tsection); 

% Start computation of short-time SPAD 
Nw=128; % length of windowed signal 
time_sections=floor(L/Nw); % Number of signal sections 

% Examples of SPWD windows of warp signal 
%freq_window=hamming( 158); time_window=blackman( 145); 
ker_SPWD=kerspwd(Nw*4,Nw*4,freq_window,time_window); 

for i=l :time_sections, 
ywindow=ysection((i-l)*Nw+l :i*Nw); % shift rectangular window to segment data 
%twindow=(i-l)*Nw+l:i*Nw; plot(twindow,abs(ywindow));   % section of time covered 
[warptimesig, M, df, dv, length2]=prewarp_HC(ywindow.'); % warp signal 
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% gg=wd(warptimesig);   % For Altes Q-distribution 
mm=af(warptimesig);C=mm.*ker_SPWD;gg=aftowd(C); % SPWD of warped signal 
% Keep positive frequencies and center time, and transform axes 
SPAD(:,i)=unwarp_HCsection(gg, M, df, dv, length2); 

end 
f=[0:Nw/2-l]/Nw*Fsdec/2; % frequency range depending on Fsdec 
imagesc(tsection,f,flipud(SPAD));axis xy; colormap(jet); 
title(sprintf('SPAD, filename = %s\ filename)) 
ylabelCfrequency, Hz'); xlabel('time, s'); % Max frequency is Fs/dec_factor/4 
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A.9 MATLAB FUNCTION TO COMPUTE THE K TH POWER SMOOTHED PSEUDO- 
WIGNER DISTRIBUTION USING THE SHORT-TIME TECHNIQUE (pcstafcetm) 

function [PSPWD] = pcstafcet(filename,decimation_factor,timeoffset,L,kappa,freq_window,time_window) 
% PCSTAFCET       Computes the kappa power smoothed pseudo-Wigner distribution (PSPWD) of 
% the power class by power warping the signal, computing Cohen's class smoothed 
% pseudo-Wigner distribution (SPWD) of the warped signal, and transforming the 
% axes for correct time-frequency localization. When the axes are transformed, only 
% the time-slice at the center of the windowed data for the resulting QTFR is kept. 
% The resulting PSPWD has dimensions (Nw x N/Nw) where N is the length of the 
% data, and Nw is the length of the rectangular window used to segment the data. 
% The sound data is decimated by a factor decimation_factor. The data to be 
% analyzed starts at time timeoffset and has length L. The frequency window of the 
% SPWD is freq_window, and the time window of the SPWD is time_window. 

%   Antonia Papandreou-Suppappola, 170ctl996 

[y,header,Fs,Ns]=loadkay(filename); 
disp(' '); disp(header); 

% Duration of digitized cut 
T=Ns/Fs; dispC '); disp(sprintf('Signal duration in seconds: %g',T)); 
%t_y=[l :Ns]/Fs; plot(t_y, y); 

% Highpass filter to remove low frequencies due to engine noise 
b=firl (40,0.05,'high'); 
y=conv(y,b); y=y(20:Ns+20-l); % since length of y increased by 40 samples 

% Decimate the data to reduce number of samples 
ydec=decimate(y,decimation_factor); 
Fsdec=Fs/decimation_factor; Nsdec=length(ydec); 
%t_ydec=[l :Nsdec]/Fsdec; plot(t_ydec,ydec); specgram(ydec,256,Fsdec); 

% Choose a section, starting at timeoffset sees 
offset=floor(timeoffset*Fsdec); 
tsection=[(offset+l):offset+L]/Fsdec; 
ysection=ydec(offset+l :offset+L); % From decimated signal 
duration_signal_analyzed=max(tsection)-min(tsection); 

% Start computation of short-time power smoothed pseudo Wigner distribution 
Nw= 128; % length of windowed signal 
time_sections=floor(L/Nw);       % Number of signal sections 

% Examples of SPWD windows of warp signal 
%freq_window=hamming( 158); time_window=blackman( 145); 
ker_SPWD=kerspwd(Nw*4,Nw*4,freq_window,time_window); 

for i=l :time_sections, 
ywindow=ysection((i-l)*Nw+l :i*Nw); % shift rectangular window to segment data 
%twindow=(i-l)*Nw+l:i*Nw; plot(twindow,abs(ywindow)); % section of time covered 
[warptimesig, M, df, dv, length2]=prewarp_PC(ywindow.',kappa); % warp signal 
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% gg=wd(warptimesig);   % For power Wigner distribution 
mm=af(warptimesig);C=mm.*ker_SPWD;gg=aftowd(C); % SPWD of warped signal 
% Keep positive frequencies and center time, and transform axes 
PSPWD(:,i)=unwarp_PCsection(gg, M, df, dv, length2); 

end 
f=[0:Nw/2-l]/Nw*Fsdec/2; % frequency range depending on Fsdec 
imagesc(tsection,f,flipud(PSPWD));axis xy; colormap(jet); 
title(sprintf('PSPWD, filename = %s\ filename)) 
ylabel('frequency, Hz'); xlabel('time, s');   % Max frequency is Fs/dec_factor/4 
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